

# **Optimising Nutrient Use Efficiency**









# Tonight's Presentations

Ronan Coll (CAFRE):

Innovative Technology to Optimise Nutrient Use Efficiency

Richard Kane (TDF Farmer): Efficient Nutrient Technology

Ciaran Hamill (CAFRE): Nutrient Use Efficiency – Beef & Sheep Farm Perspective



Point View Farms Richard Kane Seaforde, Co Down

Efficient Nutrition Technology Demonstration Farm



# POINT VIEW FARMS







'The European Agricultural Fund for Rural Development: Europe investing in rural areas'. Business Development Groups are part of the NI Rural Development Programme and are part funded by the European Agricultural Fund for Rural Development

#### College of Agriculture, Food & Rural Enterprise

### Farm profile

#### Farm/Family History

- Purchased 60ac where the farmyard is 1983
- Contracted the same land before hand.
- Acreage jump in 2008 took lease of Seaforde Est

#### Farm size

- Own 549 ac
- Rent 400ac Seaforde Estates Long Term Lease
- Contract Farm 60ac

#### **Enterprise Details:**

| Сгор             | Acres |
|------------------|-------|
| W. Wheat         | 278   |
| W .Barley        | 260   |
| S.Barley         | 37    |
| OSR              | 94    |
| W. Oats          | 94    |
| Potatoes         | 64    |
| Silage/hay       | 101   |
| Contract farming | 60    |
| Woodland         | 18    |
| Total            | 1009  |

### Farm Structure



- Mainly plough based, OSR going in min till this year
- Operate a high input strategy
- Variable costs about 1/3 of the total costs to the business
- Rotation W.Wheat, W.barley, S.barley break crop (inc oats, potatoes, OSR)
- Stubble turnips for grazing
- Organic manures only on spring cropping and W. OSR.
- Minimal staff-seasonal workers
- Well mechanised



# Nutrient Planning-why change?



- Attended Cereal challenge and early BDG meetings talking about soil and in particular pH.
- 500kg of lime (NV50) per acre per year when using arable N levels.
- Treat lime as a yearly input
- Concept started with the thought of applying lime not to soil analysis but to offtake.
- Wanted to identify and correct variation of whole field(s) not only a field average

## Nutrient Management Plan



Started to investigate options for Variable rate technology on farm with the aim to:

- Reduce the blanket spread of chemical fertiliser over the total combined crop area while maintaining or improving yield.
- Reduce the 'localised' (per ha) over application of nutrients in areas where RB209 or NAP do not require any, reducing environmental impact
- Give an overall picture of the pH level of the farm on a per ha basis and target lime applications accordingly

Considered different options and decided SOYL was best fit. SOYL provided software and an analysis service

# Pointview-Soil Analysis Using GPS



Previously soil sampled in traditional 'W' pattern but not giving whole field profile

- 1. KORA app used to mark out field boundary.
- 2. Soil sample field(s) using GPS to map precise location of each sample point.
- 3. Can add in extra samples to grid if needed
- 4. Approx. 16-24 cores in a 10-12m radius around the sample location



### Soil Analysis Results



Sample RefFORDES LODGE FIELDSample NoE256438/06CropBARLEY

 Date Received
 04/09/2018

 Area
 18.0

| Analysis         | Result | Guideline | Interpretation | Comments                                                                                                                                                                                                                                                                        |
|------------------|--------|-----------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| рН               | 6.0    | 6.5       | Slightly Low   | Slightly low. An acidic environment will reduce soil nutrient<br>availability and the efficiency of any applied fertilisers or<br>organic materials.<br>A sub optimum pH will also impact on soil microbial<br>populations and rates of activity.<br>Refer to lime requirement. |
| Phosphorus (ppm) | 32     | 16        | High           | (Index 3.3) Adequate. Use soil analysis every 3-5 years to ensure level is maintained.                                                                                                                                                                                          |
| Potassium (ppm)  | 191    | 121       | Normal         | <b>(Index 2.5)</b> Winter Barley - 55 kg/ha K2O (44 units/acre).<br>Spring Barley - 40 kg/ha (32 units/acre). Maintenance.                                                                                                                                                      |
| Magnesium (ppm)  | 107    | 50        | Normal         | (Index 3.0) Adequate level.                                                                                                                                                                                                                                                     |
| Lime Req. (t/ha) | 5.0    |           |                |                                                                                                                                                                                                                                                                                 |

# Nutrient Variation Maps -pH



- pH range in field from 6.0 -6.95
- Target pH 6.7
- Variation in pH in field



# Nutrient Variation Maps-Phosphorus



- P range in field from 18-45 PPM
- Index 2- to 4
- Target P level 2
- Variation in P in field



### Nutrient Variation Maps-Potassium



- K range in field from 18-45 PPM
- Index 2- to 4
- Target K level 2+
- Variation in K in field



| myS          | OYL Basic            |            |         |             |                        |         |                      |             |       |                     |            |                       |         | b bin | g.com         | ontero |             | () richa | ard 👻   | (j) Help     | fronti | er             |
|--------------|----------------------|------------|---------|-------------|------------------------|---------|----------------------|-------------|-------|---------------------|------------|-----------------------|---------|-------|---------------|--------|-------------|----------|---------|--------------|--------|----------------|
| Ņ            | Crop Input Form      |            |         |             |                        |         |                      |             |       |                     |            |                       |         |       |               |        |             |          |         |              | ×      |                |
| 20           | 18-19 2019-20        | 2020-21    | 2021-22 | 2022-23     | • Export as a CSV file |         |                      |             |       |                     |            |                       |         |       |               |        |             |          |         | Hide view se | tting  | ĥ              |
| Sta          | atus : In progres    | ss         |         |             |                        |         |                      |             |       |                     |            | 🖌 Idx                 | c       | F     | Farm Name     |        | Field Count |          | Incomp  | lete Count F | · (    | $\widehat{}$   |
| Pho          | osphorus             | Ye         | •       | Farm        | 0                      | No      | 🗯 Only fie           | lds that re | quire |                     |            | <ul> <li>0</li> </ul> |         | P     | ointview Farm | 4      | 0           |          | 4       |              | Ē      |                |
| Pot          | assium               | Ye         | •       | Area        | C                      | No      | processing           | ) by SOYL   |       |                     |            |                       |         |       |               |        |             |          |         |              |        |                |
| Ma           | gnesium              |            | No      | Sampled     |                        | No      | 🕴 Only red<br>fields | cently crop | ped   |                     |            |                       |         |       |               |        |             |          |         |              |        | Ų              |
| рН           | -                    | Ye         |         | Soil type   |                        | No      | Show prev            | rious samp  | ling  | O No                |            |                       |         |       |               |        |             |          |         |              |        |                |
| 1            |                      |            |         | 00          | G                      |         | data                 |             |       |                     |            |                       |         |       |               |        |             |          |         |              | 6      | Ξ.             |
|              |                      |            |         |             |                        |         |                      |             |       |                     |            |                       |         |       |               |        |             |          |         |              |        | <u> </u>       |
|              |                      |            |         |             |                        |         |                      |             |       |                     |            |                       |         |       |               |        |             |          |         |              |        | Ē.             |
|              |                      |            |         |             |                        |         |                      |             |       |                     |            |                       |         |       |               |        |             |          |         |              |        | -<br>-         |
|              |                      |            |         | Et al al    |                        |         |                      |             |       |                     |            |                       |         |       |               |        |             |          |         |              |        | ЩÝ             |
| ×            | Field                | informatio | n       | information |                        |         |                      |             |       |                     | 2          | 020-2                 | 21      |       |               |        |             |          |         |              | Ap 6   | <u>2</u>       |
|              |                      | -          |         | -           |                        | -       |                      |             |       | Yield               |            | Phos                  | sphorus |       |               | Pota   | assium      |          | L       | ime          |        | ~~~            |
|              | Field name 🔺         | •2 P       | Recent  | Notes       | Crop                   | Variety | Straw                | Ploug       | Ded   | Goal ▲ <sub>1</sub> | Prev appli | Fre                   | Prod.   | Targe | Prev appli    | Fre    | Prod.       | Targe    | . Prod. | Targe        | AI 5   | <u>ب</u>       |
| $\checkmark$ | Yard Field           |            | \$      |             | Winter Barley          |         | Removed              | Plough      |       | 10                  | yes        | A                     | A DAP   | 2     | yes           | A      | МОР         | 2+       | Ca Lime | pH6.7(m      | (      | $(\mathbf{l})$ |
| $\checkmark$ | 5 Acre               |            | \$      |             | Winter Wheat           |         | Removed              | Plough      |       | 11                  | yes        | Α                     | A DAP   | 2     | yes           | A      | MOP         | 2+       | Ca Lime | pH6.7(m      |        | $\sim$         |
| $\checkmark$ | Barn Hill            |            | \$      |             | Winter Wheat           |         | Removed              | ( Plough    |       | 11                  | yes        | A                     | A DAP   | 2     | yes           | A      | MOP         | 2+       | Ca Lime | pH6.7(m      | _      |                |
| ×            | Church Field         |            | \$      |             | Winter Wheat           |         | Removed              | Plough      |       | 11                  | yes        | A                     | A DAP   | 2     | yes           | A      | MOP         | 2+       | Ca Lime | pH6.7(m      | - 1    |                |
| ×.           | Corner Field         |            | *       |             | Winter Wheat           |         | Removed              | ( Plough    |       | 11                  | yes        | م                     | A DAP   | 2     | yes           | A      | мор         | 2+       | Ca Lime | pH6.7(m      | - 1    |                |
| ×<br>        | Cricket Field (Ford) | ec)        | \$<br>  |             | Winter Wheat           |         | Removed              | ( Plough    |       | 11                  | yes        | م<br>م                | A DAP   | 2     | yes           | A      | MOP         | 2+       | Ca Lime | рн6./(п      | - 1    |                |
| J            | Elat/Big Field       | c3)        | ♥<br>♣  |             | Winter Wheat           |         | Removed              |             |       | 11                  | yes<br>ves | -                     |         | 2     | y co<br>Ves   |        | MOP         | 2+       | Calime  | pH6.7(m      | - H    |                |
| ~            | Gravs                |            | *       |             | Winter Wheat           |         | Removed              | Plough      |       | 11                  | ves        | A                     | A DAP   | 2     | ves           | A      | MOP         | 2+       | Ca Lime | pH6.7(m      | - 11   |                |
| ~            | Kiln Field           |            | \$      |             | Winter Wheat           |         | Removed              | Plough      |       | 11                  | yes        | A                     | A DAP   | 2     | yes           | А      | МОР         | 2+       | Ca Lime | pH6.7(m      |        |                |
|              | Lodge Field          | C          | \$      |             | Winter Wheat           |         | Removed              | ( Plough    |       | 11                  | yes        | A                     | A DAP   | 2     | yes           | A      | МОР         | 2+       | Ca Lime | pH6.7(m      |        |                |
| ~            | Lurgan               | C          | \$      |             | Winter Wheat           |         | Removed              | Plough      |       | 11                  | yes        | A                     | A DAP   | 2     | yes           | A      | МОР         | 2+       | Ca Lime | pH6.7(m      |        |                |
| × .          | Lurgan               | C          | \$      |             | winter Wheat           |         | Removed              | Plough      |       | 11                  | yes        | A                     | DAP     | 2     | yes           | A      | MOP         | 2+       | Ca Lime | pH6.7(m      |        |                |

.



### Prescriptions

The prescriptions in type of .RX files were then emailed and imported into the tractor GPS Isobus terminal

| Lodge Field |       |             |     | LOFLD |     |       | Calc. Area = 17.72 |         |      | Soil Type = Standard Mineral |           |            |       |
|-------------|-------|-------------|-----|-------|-----|-------|--------------------|---------|------|------------------------------|-----------|------------|-------|
| 2020        | Winte | Winter Oats |     |       |     | Straw | Straw removed      |         |      | Yield goal = 8               |           |            |       |
| Nutrient    | PPM   |             |     | Index |     |       | Kg/Ha              | ι Produ | ıct  | Target                       | Frequency | Fertiliser |       |
|             | Max   | Avg         | Min | Max   | Avg | Min   | Min                | Avg     | Max  | Index                        |           | Tonnages   |       |
| Potassium   | 342   | 207         | 154 | 3     | 2+  | 2-    | 118                | 207     | 223  | s 2                          | Annual    | MOP        | 3.67  |
| Phosphorus  | 59    | 26          | 17  | 4     | 3-  | 2-    | 0                  | 85      | 153  | s 2                          | Annual    | DAP        | 1.51  |
| pН          | 6.6   | 6.3         | 6.0 |       |     |       | 2000               | 3027    | 5360 | pH6.7(r                      | Triennial | Ca Lime    | 53.65 |

| Lodge Field | Lodge Field |              |     | LOFLD |       |               | Calc. Area = 17.72 |         |                 | Soil Type = Standard Mineral |       |        |            |      |
|-------------|-------------|--------------|-----|-------|-------|---------------|--------------------|---------|-----------------|------------------------------|-------|--------|------------|------|
| 2021        | Winte       | /inter Wheat |     |       | Straw | Straw removed |                    |         | Yield goal = 11 |                              |       |        |            |      |
| Nutrient    | PPM         |              |     | Index |       |               | Kg/Ha              | l Produ | ict             | Target                       | Free  | quency | Fertiliser |      |
|             | Max         | Avg          | Min | Max   | Avg   | Min           | Min                | Avg     | Max             | Index                        |       |        | Tonnages   |      |
| Potassium   | 342         | 207          | 154 | 3     | 2+    | 2-            | 123                | 196     | 218             | 2+                           | Ann   | ual    | MOP        | 3.47 |
| Phosphorus  | 59          | 26           | 17  | 4     | 3-    | 2-            | 0                  | 152     | 167             | 2                            | Ann   | ual    | DAP        | 2.69 |
| рН          | 6.6         | 6.3          | 6.0 |       |       |               | 0                  | 0       | 0               | pH6.7(r                      | rTrie | nnial  | Ca Lime    | 0.00 |





- These prescriptions allow the GPS to determine the exact application of the material being spread at the exact position.
- The GPS will not allow the operator to apply the wrong prescription in the wrong field
- The actual application was then recorded by the machine for future traceability







### Costs

- Cost of SOYL service set up
- Soil sampling
- Annual subscription fees etc
- Capital investments

Savings??





- The use of VRT to match the variable nutrient availability to crop requirement
- Potential to reduce chemical fertiliser applied??

Targeted applications =

- increase yield on 'poorer' parts of each field
- less environmental impact.
- Profitability



### Questions?







'The European Agricultural Fund for Rural Development: Europe investing in rural areas'. Business Development Groups are part of the NI Rural Development Programme and are part funded by the European Agricultural Fund for Rural Development



# **Nutrient Use Efficiency**

# **Beef & Sheep farm perspective**

#### Ciaran Hamill Senior Beef & Sheep Adviser





# Nutrient Use Efficiecy

- Soil
- Sward
- Nutrients
- Grazing system
- Silage



# **Technologies used**



Soil analysis



LESSE Slurry spreading – Dribble bar (Contractor)



#### Grass plate meter





#### AgriNet software package

# \*

Weather station



#### **CAFRE Nutrient Calculator**

EID weighing scales

SOIL

type physical state, nutrient status Inputs / offtake Input source fertiliser slurry digestate others.... Offtake how when how much

| Soil<br>pH | Р | к  | Р    | ĸ    | P2O5<br>Kg/ha | K2O<br>Kg/ha | Lime<br>Te/ha |
|------------|---|----|------|------|---------------|--------------|---------------|
| 6.3        | 3 | 2- | 36.4 | 171  | 0             | 0            | 0             |
| 6.6        | 3 | 2+ | 28.0 | 194  | 0             | 0            | 0             |
| Ġ.         |   |    | 07.0 | 4.54 |               | 0            | 0             |









What

is the

Do I

have the

records

needi

Do I need

to apply for

a Nitrates

# Soil nutrient management

**P** Index рH 6.0 1.0

- Soil type: e.g. Light loam on mostly very free draining land / heavy clay / peaty / .....
- Fields sampled every 3 4 years
- Liming Plan Developed e.g.

•2T/acre at reseeding / 2T/acre after 5 years (half way between reseeds)

- CAFRE Nutrient Calculator Field specific plan
- N Loading 2021: 142 kgN/ha / 165kgN/Ha / 190 ...
- 6% Dairy Cow Slurry Imported / Digestate import / Pig slurry import /.....

#### 4R's - Right source, Right rate, **Right time, Right place**





Time after grazing 🗕

- Type/variety,
- age,

4th

new

leaf

1 dying

- consistency,....
- grass, clover, MS, forage



# Grass - plus.....





# Reseding



# Reseding







### Grazing strategies adopted on beef farms



| Strategy     | Annual yield (t<br>DM/ha) | Utilization (%) | Useable yield<br>(t DM/ha) | Percentage increase |
|--------------|---------------------------|-----------------|----------------------------|---------------------|
| Set stocking | 6.0                       | 50              | 4.3                        |                     |
| Rotational   | 10.2                      | 65              | 6.6                        | +56%                |
| Paddock      | 10.2                      | 80              | 8.2                        | +92%                |

Small investment in water troughs, electric wiring & posts and labour gives a high return on investment

### Is it worth moving to daily paddocks?

#### **Experimental treatments**

Paddock system

Intensive grazing - Daily allocation (meeting supply with demand)

#### **Benefits**

Grass utilization increased by 19% Animal production per hectare increased by 33% Estimated value £656/hectare

Create Nofence Boundary

ogle Play

#### Consideration

However, increased labour demand Virtual fencing



# **Paddock grazing**

| Pros                                                    | Cons                                       |
|---------------------------------------------------------|--------------------------------------------|
| Highest grass production and use                        | Initial cost of fencing and water troughs  |
| High quality grass & higher stocking rates              | More intensive management – skill required |
| More even manure distribution                           | Requires careful monitoring                |
| Can extend grazing season                               |                                            |
| Allows for excess grass to be cut out as silage (bales) |                                            |
| Quieter/more manageable stock?                          |                                            |

### Farm Infrastructure

- Split large areas into smaller paddocks with permanent and temporary fences
- Lane/roadway access to paddocks
- Paddocks are rectangular in shape
- Paddock size: number and type of stock / land area / fencing / water access / .....
- E.g. 0.6 1Ha / Average stocking rate: 2.65 LU/ha





Investment in grazing infrastructure essential to improving grassland management

### **Farm Infrastructure**

- Alternate grazing between cattle, sheep and silage
- Reaping the benefits of clean grazing
- Water e.g. water bowsers left in a different location each grazing.
- Fencing temp vs permanent







#### Investment in grazing infrastructure essential to improving grassland management









### Maximising duration at grass – spring grass

Spring grass is highly nutritious

A lot of scientific evidence demonstrating improved livestock performance by turning cattle out earlier in the spring

Lowers feed costs & ammonia emissions

|                               | Early turn out | Late turn<br>out | Difference |
|-------------------------------|----------------|------------------|------------|
| Date turned out               | 5 April        | 22 April         | +17 days   |
| Housing live weight<br>(kg)   | 538            | 515              | +23 kg     |
| Slaughter live weight<br>(kg) | 674            | 666              | +8 kg      |
| Carcass value (£)             | 1306           | 1288             | +£18       |



### **Grazing management - Cows and Calves**

- Turn out stock Mid-March House from October (Avg. 200 day grazing season)
- 20-25 cows and calves per group
- Cows on rising plane of nutrition for a 10 Week breeding season (15<sup>th</sup> May to the 1<sup>st</sup> August)
- Target mating BCS = 3.0
- Blood sample for mineral deficiency
- Target LWT gain from birth to weaning: 1.2 kg/d (Target 300 kg weaning weight)

2021 First animals Out – 27<sup>th</sup> February Last animals in – 23<sup>rd</sup> November





www.cafre.ac.uk

Example Farm

#### Example Farm

# **Grassland Management**

- Participant in GrassCheck for the past 5 years
- Farm grew 10.8 tonnes of grass per hectare in 2021 and still grazing
- Measures grass weekly with a rising plate meter
- All data entered on AgriNet and uses a grass wedge to make grazing decisions
- Graze paddocks for 3 days in 21 day rotation
  - Target Pre grazing covers: 2800 3000 (8 10 cm)
  - Target Post grazing covers: 1600 1700 (4 5 cm)

Regular measurement is key to get an accurate estimate of grass growth



# Benefits of grass measuring

- Know how much grass is grown on farm
- Improvement in grass quality

| Dry matter        | 18 - 20 % |
|-------------------|-----------|
| Crude protein (%) | 18 - 22 % |
| ME (MJ /kg DM)    | 11 - 11.5 |

- Increase cattle performance
- Can identify best and worst performing fields
- Targeted reseeding and soil improvement



# Fertiliser



# **Organic Manures**

- Why,
- What,
- Where,
- When, and
- How....?



# Planning for Slurry...

| Available Nutrients (Spring applied using LESSE) |      |                              |                                         |       |                    |    |    |  |
|--------------------------------------------------|------|------------------------------|-----------------------------------------|-------|--------------------|----|----|--|
|                                                  |      |                              | kg/m <sup>3</sup>                       |       | units @ 1000gal/ac |    |    |  |
| Manure Type                                      | DM % | N CS 40%<br>PS 50% AD<br>40% | P 100% @<br>index >2 50%<br>@ index 0-1 | K 90% | N                  | Р  | к  |  |
| Cattle slurry                                    | 6    | 1                            | 1.2                                     | 2.3   | 9                  | 11 | 21 |  |
| Pig slurry                                       | 4    | 1.8                          | 1.5                                     | 2     | 16                 | 14 | 18 |  |
| Digestate whole                                  | 5.5  | 1.44                         | 1.7                                     | 3.96  | 13                 | 15 | 35 |  |
| Farm Sourced Digestate                           | 5.5  | 1.74                         | 1.65                                    | 2.52  | 16                 | 15 | 23 |  |





# Silage

A general guide to the optimum input of concentrates for various types of finishing cattle (kg per day)

|                                                                            |               | Silage quality |                |
|----------------------------------------------------------------------------|---------------|----------------|----------------|
|                                                                            | Very good     | Average        | Poor           |
| First cut taken                                                            | Before 25 May | 1-10 June      | After mid-June |
| Regrowth taken                                                             | 6-7 weeks     | 8-10 weeks     | Over 10 weeks  |
| Average D value                                                            | Over 70       | 62-68          | Less than 62   |
| Young bulls                                                                | 3.5           | 6.5            | 8.2            |
| Heavy steers of<br>high growth potential                                   | 3.0           | 6.0            | 7.5            |
| Steers of lower growth<br>potential and heifers<br>of high growth potentia | 2.2<br>al     | 4.5            | 6.0            |
| Heifers of low<br>growth potential                                         | 1.0           | 2.5            | 3.5            |

Lively et al

# Improving silage quality – what does this mean?

#### 3 cut vs 2 cut silage system

- Less bulk but more quality
- First cut taken earlier in the season
- Shorter cutting interval (6-8 weeks)
- Faster regrowth
- Less damage to sward
- Higher silage cost

|                                |                                                                            | Silage system               |                                       |  |
|--------------------------------|----------------------------------------------------------------------------|-----------------------------|---------------------------------------|--|
|                                |                                                                            | 2 cut                       | 3 cut                                 |  |
| Date of                        | 1 <sup>st</sup> cut<br>2 <sup>nd</sup> cut<br>3 <sup>rd</sup> cut          | 7 - 12 June<br>13-18 August | 20-25 May<br>3-8 July<br>20-25 August |  |
| Average yield of grass (t/ha ) | 1 <sup>st</sup> cut<br>2 <sup>nd</sup> cut<br>3 <sup>rd</sup> cut<br>Total | 6.9<br>4.5<br>11.4          | 4.7<br>3.4<br>2.8<br>10.9             |  |
| Silage 'D' value               |                                                                            | 63                          | 71                                    |  |

Lively et al

# Improving silage quality – what does this mean?

Higher quality silage means:

- Higher animal intakes
- Higher volume of silage required
- Lower concentrate requirements
- More profit for the farmer

Improved grassland management within grazing systems could free up land for higher quality silage production to reduce concentrate requirement

|                                   | Silage system |      |       |
|-----------------------------------|---------------|------|-------|
|                                   | 2 cut         |      | 3 cut |
| Concentrate intake (kg/day)       | 2.5           | 5.0  | 2.5   |
| Silage dry matter intake (kg/day) | 6.3           | 5.3  | 6.9   |
| Carcass gain(kg/day)              | 0.54          | 0.76 | 0.76  |
| Daily feed cost (£/day)           | 1.46          | 1.93 | 1.67  |
| Carcass value (£/kg)              | 2.00          | 2.81 | 2.81  |
| Feed cost – carcass value (£/day) | 0.54          | 0.88 | 1.14  |
| Feed inputs for 100 cattle        |               |      |       |
| Silage area required (ha)         | 10.1          | 8.5  | 11.3  |
| Concentrate required (tonnes)     | 40            | 80   | 40    |

# **Efficient / Sustainable Production**



#### **BENCHMARK** –

Increase stocking rate and Gross Margin (£/Hectare) without increasing inputs



#### BENCHMARK –

Reduce concentrate use while increasing GM/Ha and numbers sold

### Grow grass efficiently and use it effectively

# Summary

The best place to manage grass is in the field:

- Pay attention to above and below the surface monitor soil health / grass growth
- Manage Nutrients input / offtake
- Manage Grazing Use a rotational paddock grazing system
  - Out earlier, in later
- Measure and manage animal and paddock performance
- Make better silage.....
- Use appropriate technology electric fence, soil analysis, Plate meter, AgriNet, CAFRE Nutrient Calculator, GrassCheck, GPS, GIS,...











European Agricultural Fund Rural Development: Europe investing in rural areas'.



# Summary

- Use products in the way they are designed to be used, backed by evidence,...
- Trust and focus on the science
- Your farm is not like anyone other farm
- Journey vs destination

