

Leatherjackets in Grassland - The Challenge 10th March at 8pm

Agriculture, Environment and Rural Affairs

The European Agricultural Fund for Rural Development: Europe investing in rural areas

Leatherjacket Mitigation Strategies EIP Project

European Innovation Partnership (EIP)

- Designed to bring farmers, researchers and advisors together to help NI farmers innovate and address specific opportunities and challenges
- Jointly funded by the European Agricultural Fund for Rural Development and DAERA
- Projects started November 2020, end June 2023

Leatherjacket Mitigation Strategies EIP Project

- Fermanagh Focus
- Prevent avoidable loss of invaluable grazing resources
- Determine factors that influence leatherjacket prevalence and suggest alternative mitigation strategies

Group Members:

- AgriSearch (Lead Partner)
- AFBI Archie Murchie
- AFBI Stephen Jess
- AFBI Francis Lively
- Albert Foster
- Ian Brown
- Geoffrey Read
- John Egerton
- CAFRE Support Francis Breen

Leatherjackets introduction & project findings – challenges posed

An EIP-Agri Project Leatherjacket Mitigation Strategies Group

The European Agricultural Fund for Rural Development: Europe investing in rural areas The European Innovation Partnership (EIP) Scheme is jointly funded by the European Agricultural Fund for Rural Development (EAFRD) and the Department of Agriculture, Environment and Rural Affairs (DAERA)

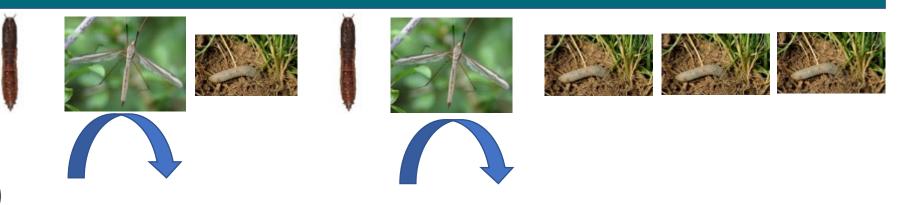
Species of concern

Tipula paludosa

- Generally, most common
- Widely distributed

Tipula oleracea

- Relatively uncommon
- More frequent in western counties of Northern Ireland


Life-cycle (T. paludosa and T. oleracea)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

T. oleracea (bivoltine)

Leatherjacket damage to grassland

Re-seeds and permanent grassland affected

Populations of > 0.5 M/ha may cause measurable yield loss Average NI losses 0.5t DM/ha Beef farm - £109/ha/year Dairy farm - £220/ha/year

Previous control measures

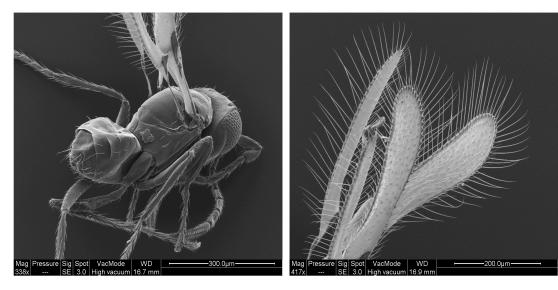
Chlorpyrifos – EC approval withdrawn in 2016

- Primarily safety to operator
- Broad spectrum non-target organisms

Alternative control measures

Re-seeding

- 10% grassland annually
- PRG and clover
- pH 6.0-6.3
- Recommended list
- High DM yield varieties
- NPK
- Early cultivation plough July
- Consider Spring re-seed


Biological control - natural

Predation by birds, e.g. rooks and starlings

Tipula Iridescent Virus

Parasitoid wasps

Anaphes sp., was found to have attacked 44% of tipulid eggs examined in Northern Ireland (Blackshaw unpublished data)

Objectives

2

3

4

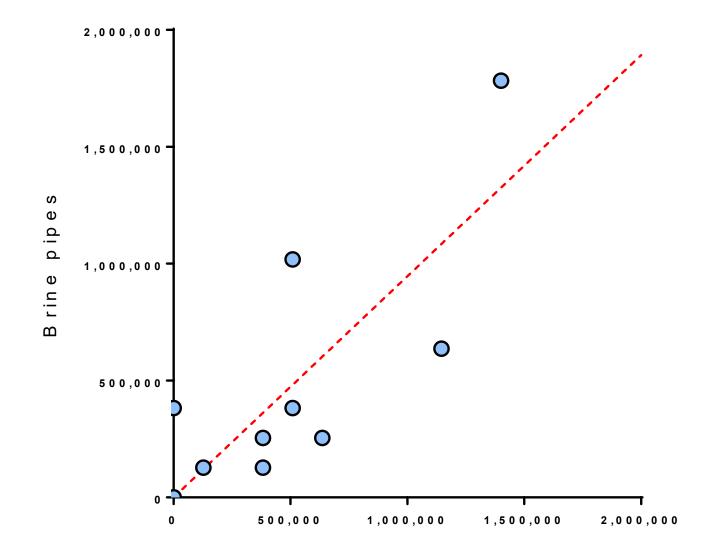
• Determine the number and species of leatherjacket present within the study areas

• Assess impact of leatherjackets within the study areas

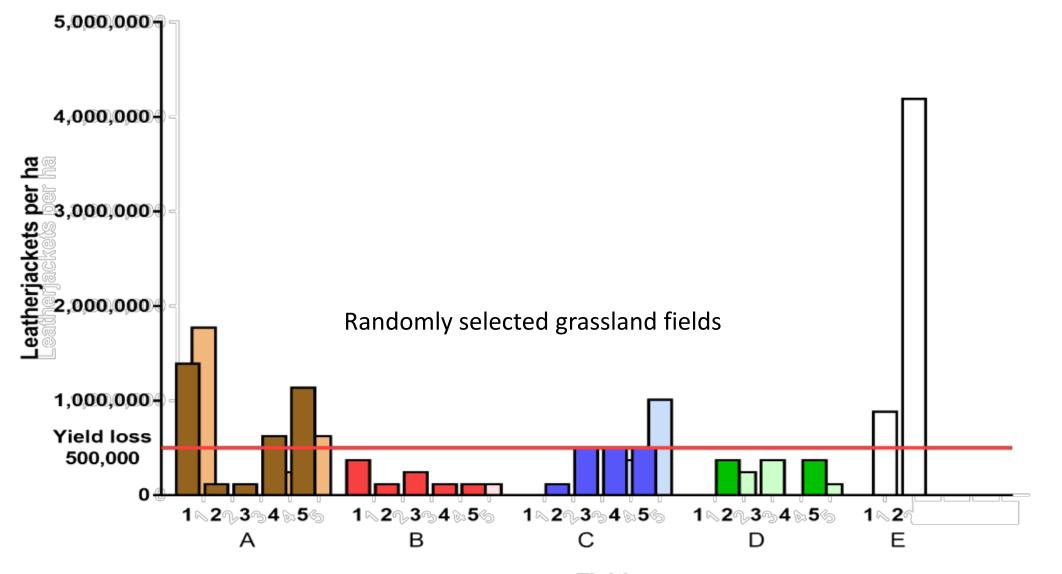
- Assess the correlation between influencing factors and leatherjacket prevalence with an emphasis on grazing strategies
- Learn from farmers' experience to identify feasible and practical mitigation strategies

Sampling – soil cores

- 5 fields selected randomly per farm (4 farms)
- 10 cm diameter soil cores
- 10 cores per field
- 20 fields, 200 cores
- Sampled in March


Extraction

Sampling – Brine pipes



Results – soil cores vs brine pipes

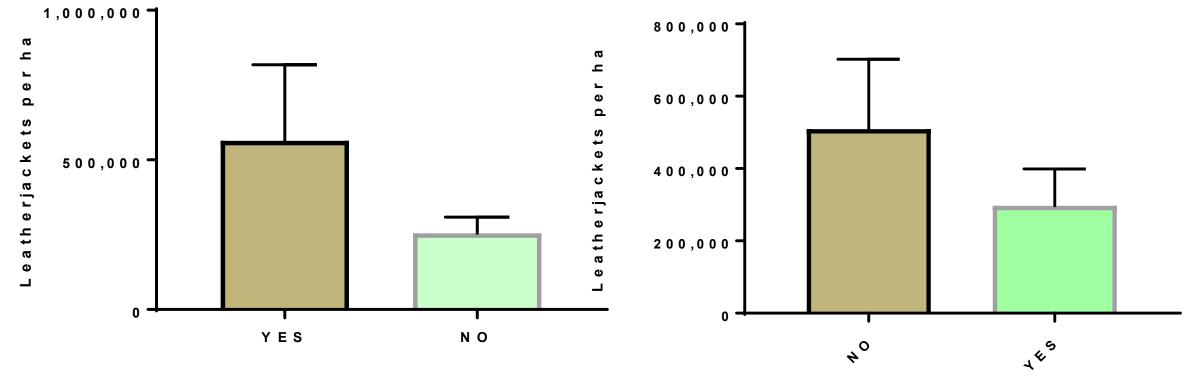
Soil cores

Results – cores & brine pipes

Field/Farm

Results – adjacent fields

4.2 million


0.89 million

Treated with Agritox (MCPA) for rush control

McCracken *et al.* (1995) studied the effects of field characteristics in south-west Scotland to leatherjacket density.

- East-facing pasture;
- Tendency for waterlogging;
- Proximity to the sea;
- Leatherjacket numbers from the previous year;
- One cut of silage (compared to none or more than one cut);
- Application of slurry;
- High grass height at the time of sampling (Nov-Jan).

Indicators?

Previous leatherjacket problems

Reseed 2010 or after

Challenges (Grazing)

Why do some fields suffer more damage than others?

- Microclimate*
- Soil moisture*
- Annual fluctuations density-dependence population regulation* (*R. Blackshaw pers comm.)
- Management

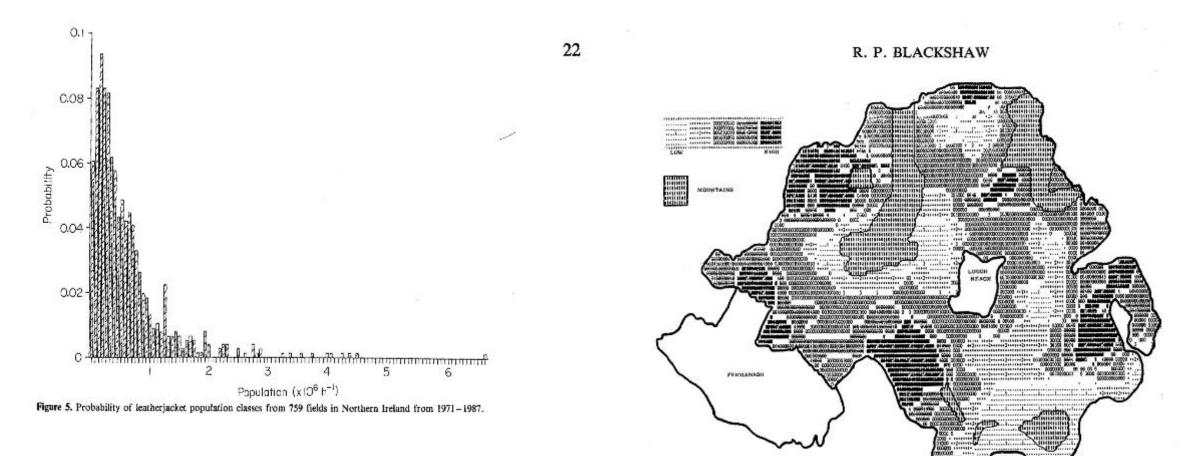
How can we mitigate leatherjacket damage?

- Intervention approach (spray and treat)
- Multi-season management approach

What does best practice look like?

John Egerton – Rosslea, Fermanagh

- Family Farm
- 72 ha
- Beef Enterprise
 - Suckler to Beef
 - Contract Rearing
- Sheep Enterprise
- Grassland focused



A Range of Population Sizes

Spatial Differences

Annual Leatherjacket Survey

A Predictive Model

Table 1. Climate-based multiple-regression model of mean annual leatherjacket numbers $(\times 10^3 ha^{-1})$ in Northern Ireland for the year 1970–1984 (after Blackshaw, 1990)

Regression		
Variable	coefficient	t-value
Constant	-3780.1	-3.07
March rainfail (mm)	3.30	2.30
July rainfall (mm)	-3.17	-2.90
Winter rainfall* (mm)	-2.49	-3.93
February chill?	1.78	2.56
October temperature (°C)	-46.16	-3.70
December humidity	53.13	4.45

* Winter rainfall -- November + December rainfall.

† Chill factor = ((Wind speed × humidity × 35) × air temperature).

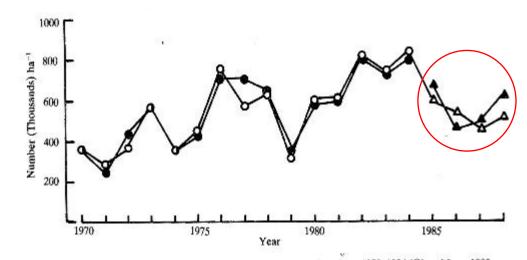


Fig. 1. Observed mean annual population density of leather jackets from 1970–1984 (\bigcirc) and from 1985–1988 (\triangle), compared with the expected density after fitting Blackshaw's (1990) climate model for 1970–1984 (\bigcirc), and predictions based on this model for 1985–1988 (\triangle). A density of 63.5 thousand ha⁻¹ is equivalent to one individual per sample unit of twenty soil cores.

Model Extended to Predict Field Population Sizes

Can Predict High/Low Risk Years (for Spring Barley)

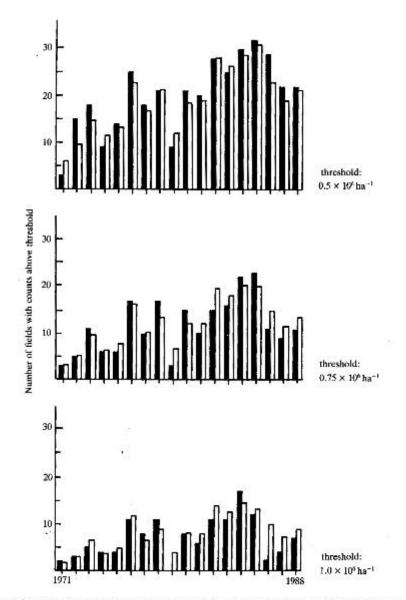
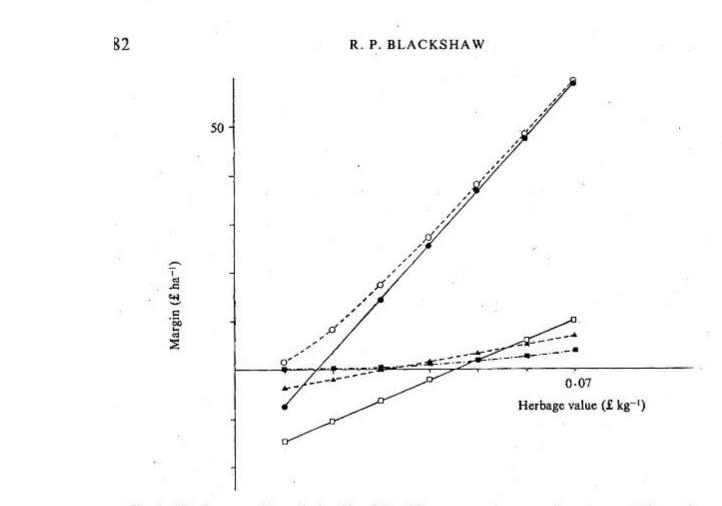



Fig. 2. Observed annual numbers of fields with counts per sample greater than specified threshold values (solid bars), compared with the expected frequency of fields after fitting a family of Adès distributions (open bars) to the data for years 1971–1988. Thresholds are eight per sample (top, equivalent to 0.5×10^6 ha⁻¹); 12 per sample (centre, 0.75×10^6 ha⁻¹); aixteen per sample (foot, 1.0×10^6 ha⁻¹).

Earlier Control Gives Better Yield Responses

Sequential Sampling for DIY Monitoring?

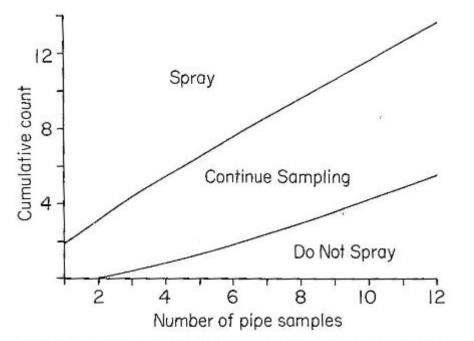


Figure 2. Acceptance curves for a sequential sampling plan for leatherjackets in grassland.

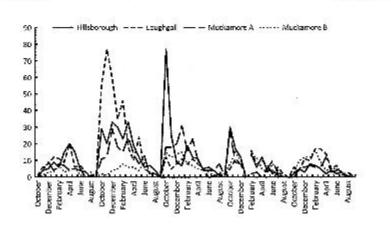
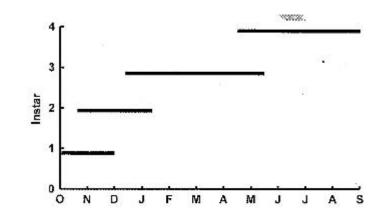
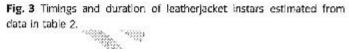
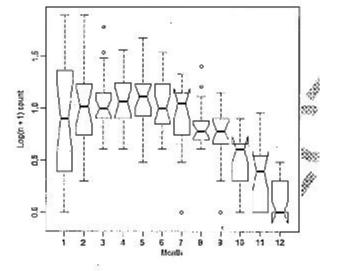
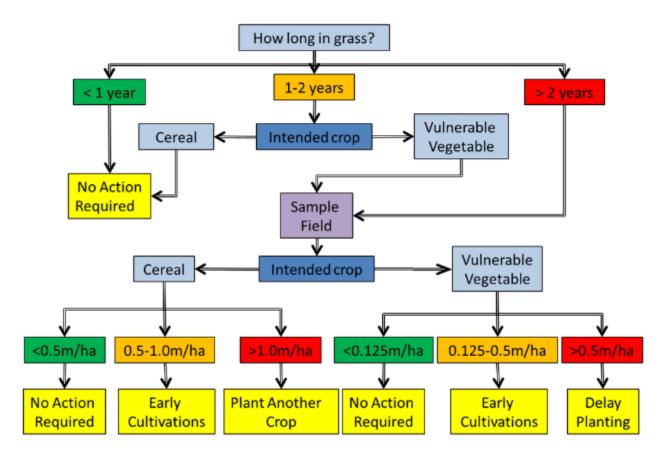





Fig. 1 Monthly counts of leaderjackets from four fields in Northern related over 5 years. Data series starts in October 1981 and finishes in September 1986.

What is the best time to count the beasties?

R. P. Blockshew and J. P. Moore


Fig. 2 Distribution of counts by month across four fields and five gen erations, indentations indicate 95% confidence intervals. Calendar months follow in order from October which is designated 1 to September, designated 12. ∞. ∞

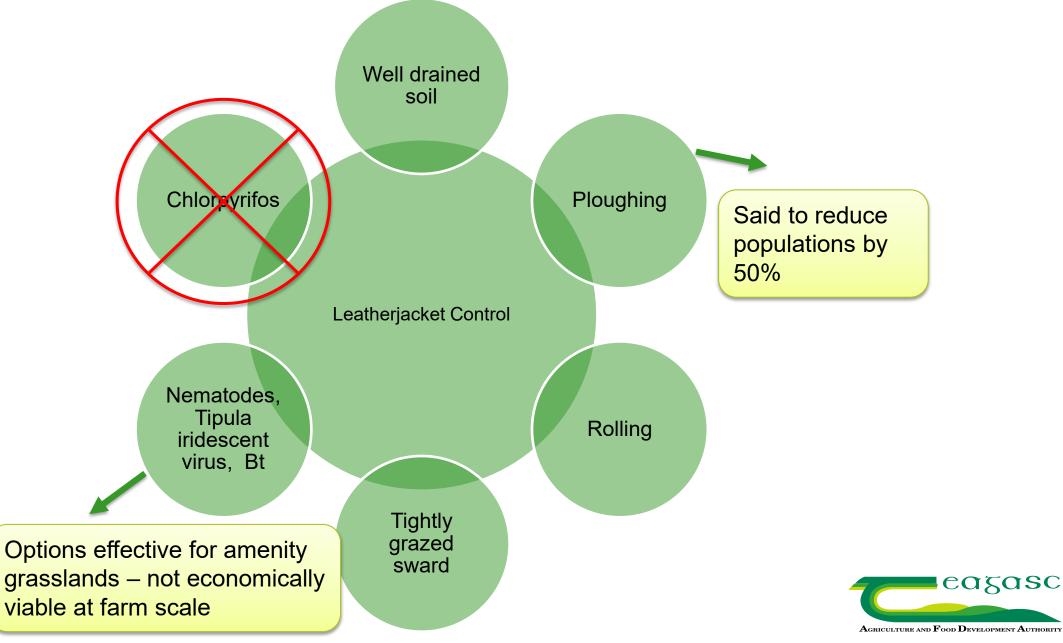
Timing of leatherjacket instars

Summary

- It is possible to predict the level of risk using models based upon weather
- We don't know if these models will work in Fermanagh and are they timely enough?
- Knowing the risk does not tell you where your problems are
- For best response to insecticides, the earlier the better
- Simple DIY field monitoring methods exist and effort can be further reduced BUT not accurate before November
- (My View) Need to consider a multi-year management approach rather than a control decision.

Decision tree for managing leatherjackets in organic rotations

Rod Blackshaw


Tipula sp. – an agricultural pest. Aisling Moffat

IPM Approaches for larvae

Teagasd

Leatherjackets in Ireland The Challenges

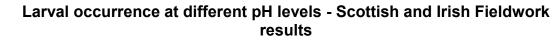
No survey conducted in the Republic

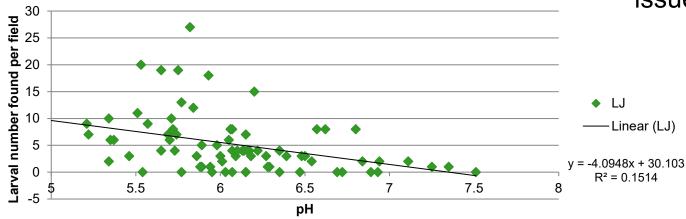
Need to know – species of agronomic importance for any IPM practices

Research aims:

- 1. National Survey
- 2. Species level
- 3. Soil factors
- 4. General management advice

Leatherjacket Survey – ROI Aims 1 & 2


- National Survey species of agronomic importance –
 - 136 fields sampled
 - >75% Tipula paludosa
- Main issues seen in permanent pasture. Build up of populations overtime
- Grasslands above thresholds:
 - Ireland: 17%
 - Scotland: 53%



Soil Factors of importance Aim 3

Positive Correlation	Negative Correlation	No Correlation
К	Mg	AI
Fe	Р	Са
Zn	pH	С
	Mn	Мо
		Ν
		Na
		S
		Om

- Initial results indicate that pH, Mg and P are significantly correlated to leatherjacket populations.
- Higher larval populations in acidic soils.
- Could highlight an overall management issue

Grassland Management Advice Aim 4

- 1. Microbiome samples will provide the bacterial and fungal communities present per field.
 - Relate to leatherjacket populations
 - Any potential for bio control options
- 2. Controlled larval feeding experiment
 - Determine associated yield losses
 - Sward composition advice

Grassland Management Advice

Multi-species Grassland Trial

No Leatherjackets

Plantain

Perennial Ryegrass

Chicory

Leatherjackets

Perennial Ryegrass

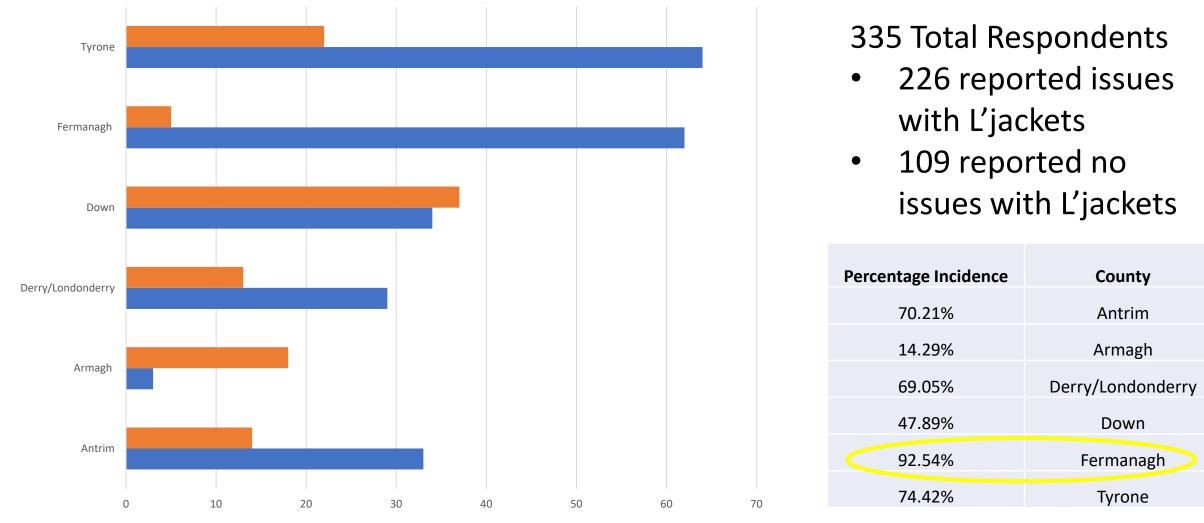
Chicory



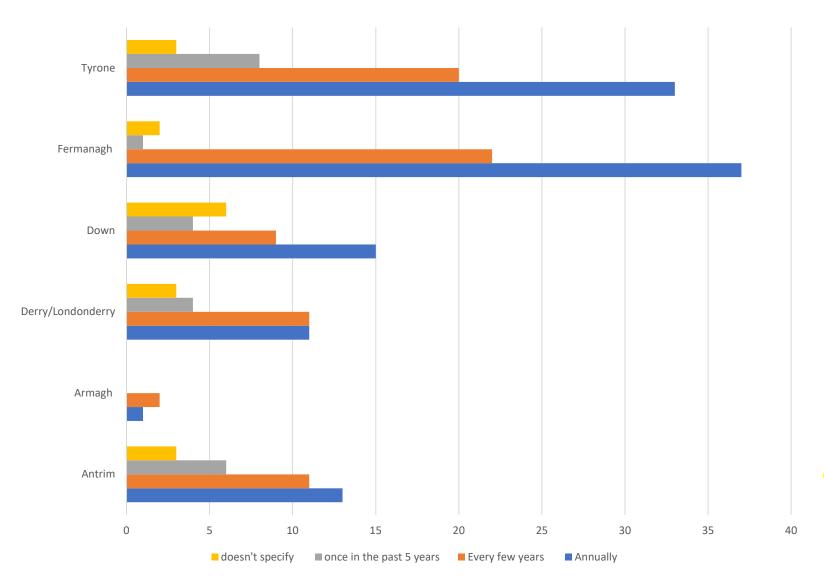
Multi species

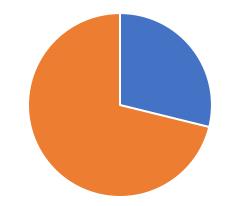
Conclusions

- Significant yield loss in white clover
- Highest larval populations in plantain, but no significant yield loss



- Multi species no significant yield loss and feeding increased diversity
- Paired with soil analysis and microbiome work, will add to IPM toolkit for this pest





Of those that reported issues with L'jackets the regularity of an occurrence was variable

Annual	Every few years	County
39.39%	33.33%	Antrim
33.33%	66.67%	Armagh
		Derry/Londo
37.93%	37.93%	nderry
44.12%	26.47%	Down
59.68%	35.48%	Fermanagh
51.56%	31.25%	Tyrone

Leatherjackets normally present across the majority of the farm

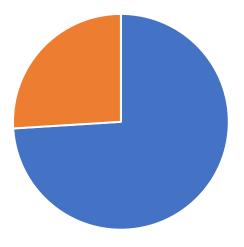
Leatherjackets normally present in a few fields only

- How many million per hectare?
- Simple brine sampling method can provide more detailed info on the extent of Leatherjacket presence

- Majority of farms reporting Leatherjacket presence in a few fields only
- Raises the following questions:
 - Why those fields?
 - How did they know Leatherjackets were present?

How did you know leatherjackets were present in your farm grassland?	Total
Lack of grass/grass dead/dying	97
Dead grass and then dug into soil	42
Visual evidence	33
Craneflies present	12
Issue with reseeds	4
Bird Activity	16
Soil Pits	1
From a Description	1

1


Do the Affected fields have anything in common	Total
Damp/wet ground	22
Arable/reseeds	24
Nothing common/ mixture of fields	38
Grazing ground	13
Silage ground	7
Meadow	2
Stock move earlier/ heavy grass covers	7
Rough Grazing	7
Heavier land/ heavy clay land	6
Same soil type	4
Older swards	4
No slurry/ fertiliser applied	2
Best ground/ fields in good condition	2
High organic soils	1

Craneflies present in fields the late summer before

- Very mixed opinions
- No known commonality the most popular response
- Wet, heavy ground featured
- Arable/reseeds featured

Did the presence of leatherjackets significantly impact grass growth/grass availability on farm?

• 75% - Yes

Any actions you have taken to either control the leatherjacket population or reduce the likelihood of leatherjacket infestation	Total
Grassland management	26
Rolling	31
Used spray in past	40
No action	37
reseed/stitch/cultivate/subsoil	10
spread slurry/fertiliser	6
Brassica break crop before reseeding	1
chain harrowing and mushroom compost	1
use dessicants on previous crop stubble	1
improve land drainage	1
encourage bird population	1
sowed lime	1
weed control	1

Again a lot of variability

Most common answer is used spray...

followed by no action – so in absence of spray availability at present there really is a lack of reliable options available

Grassland Management does feature and this is an area the EIP will be looking at in more detail

Questions & Answers