Genomics; Does it really work?

AHDB Agriculture & Horricultur DEVELOPMENT BOARD

Marco Winters

Presentation outline

- Quick recap on Genomics; What and Why?
- Implementation in UK
- Results on prediction accuracy

Genomics Evaluations

- Refinement of existing evaluations
 - Pedigree information
 - Genomic information
 - Performance recording (e.g. Milk, SCC, Type)
 - Progeny performance

- Builds on current proven system of evaluation
 - PTA's look identical
 - and should be used in the same way

Time

'Unlocking' the DNA code

- Using reference group for calibration;
 - Daughter proven bulls + their Genotypes

UK implementation (Holstein)

- (inter)national collaboration through DairyCo
 - UK, ITA, CAN, USA
 - ~23,000 daughter proven bull genotypes

- Bespoke UK Genomic evaluations
 - DairyCo (Production and Fitness) & Holstein UK (Type)
 - Males April 2012
 - Females April 2013

Validation of Genomic evaluations

• Prior to publication

- Validation internally of prediction equations
 - EGENES team at SRUC

- Internationally; Independent validation by Interbull
- Estimated reliability gains from Genomic data;

Trait	PA	GPTA	gain	(dtr Eq.)
SCC	0.28	0.69	0.41	120
Production	0.28	0.68	0.40	18
C.I.	0.24	0.61	0.37	300
LS	0.24	0.56	0.32	90

Reduction of Generation interval

Does it really work?

• Using the official UK published evaluations

- Comparing
 - April 2012 Young bull genomic indexes
 - December 2013 indexes for the same bulls, but now with daughter performance information
- 3001 bulls in the analysis

All dtrs proven bulls change in PLI (Apr-12 vs. Dec-13)

- Year of birth; 2000 onwards (>38,000 bulls)
- April 2012 (rlb = 77.7), December 2013 (rlb = 78.3)

Daughter proven (changing >5% rlb)

- Correlation = 0.93
- Average April 2012 = £54 PLI (rlb. 77%)
- Average Dec 2013 = £54 PLI (rlb. 85%) (+8% rlb increase)

Genomic → Dtr proven (Apr-12 to Dec-13)

- Correlation = 0.88
- Average April 2012 = £100 PLI (rlb. 69%)
- Average Dec 2013 = £101 PLI (rlb. 81%) (+12% rlb increase)

Distribution of changes

- 90% are within +/- £37 points
- 5% go up by £38 or more
- 5% go down by £ -38 or more

Dtrs proven and **Genomic** combined

- Correlation = 0.93
- Average Apr12 = £54 (rlb. 77%)
- Average Dec13 = £54 (rlb. 85%)(+8%)

Correlation = 0.88

Avg. Apr12 = £100 (rlb 69%)

Avg. Dec13 = £101 (rlb 81%) (+12%)

Genomic proof stability

- for the major traits

			\frown		\frown
Trait	Apr-12	Dec-13	Ay. Change	e Gain.rlb	Corr
Milk	469	473	4	12	84
Fat	14.6	14.9	0.3	12	86
Prot	12.5	12.3	-0.2	12	85
Fat%	-0.04	-0.04	0.00	12	91
Prot%	-0.03	-0.04	-0.01	12	91
SCC	-9	-9	0	10	85
Lifespan	0.2	0.2	0	3	89
Fertility	-1.0	-1.0	0.0	16	87
Type Merit					(/
(Holstein UK)	1.45	1.47	0.02	12	84

Should young sires be used?

- High quality young bulls on offer
 - And getter better quick

• Averages £PLI of Top 100 available

<u>Top 100</u>	<u>Apr-12</u>	<u>Apr-13</u>	<u> Apr-14</u>
Young	197	230	256
Proven	182	197	205
Difference	15	33	51

Genomics use

Average £PLI (based on Insemination data)

How much use is justified?

- Balance Risk and Reward
- Only pick bulls of high genetic merit
 - Use the same criteria as you apply to proven bulls
- If Young bulls >20 point PLI higher than the proven bulls used
 - always worth the risk
- Use a team of bulls to minimise risk
 - Don't gamble on one 'hot' bull
- Use Reliability as a guide for how much semen to use per bull

Reliability vs. Bull usage

Summary

• Exciting times !!

- Genomic applications only just starting
 - Accuracy living up to expectation
 - Quality of young bull genetics ever increasing
 - Don't loose out !
- We need to ensure we capitalise on its future potential
 - Data recording and collaboration essential

