

Housekeeping

You are automatically muted

Use the Q&A function (not the chat box) to ask questions

If you have issues – leaving and re-joining usually fixes them.

The webinar will be recorded

Please complete the feedback survey at the end

Agenda

8.00	Welcome & Introduction	Seamus McCaffrey, AgriSearch
8.05	Fertiliser Planning for 2022: costs-benefit of fertiliser application	Debbie McConnell, AFBI
8.25	Nutrient Management – Back to Basics	Aveen McMullan, CAFRE
8.35	Fertiliser use on farm - 2022	Robert Patterson, CAFRE
8.50	Reducing reliance on fertiliser N	David Patterson, AFBI
9.00	Questions & Answers	

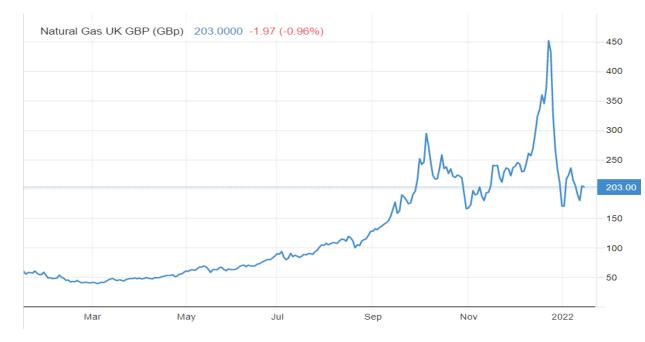
AGRI-FOOD & BIOSCIENCES INSTITUTE

Leading | Protecting | Enhancing

Webinar

Fertiliser planning for 2022: cost-benefit of fertiliser application

Dr Debbie McConnell Dairy Grassland Research


January 2022

afbini.gov.uk

Introduction

- Nitrogen is a key nutrient in grassland production systems
- N.I. imports 342,000 tonnes of fertiliser per annum, of which 86,700 tonnes is nitrogen (N; DAERA, 2021)
- Contracted supply of fertilisers across Europe due to:
 - Significant rise in energy costs impacting fertiliser manufacture, particularly in Europe
 - COVID disruptions to both production and transport infrastructure of fertilisers
 - Global reduction in fertiliser exports

UK natural gas prices during 2021

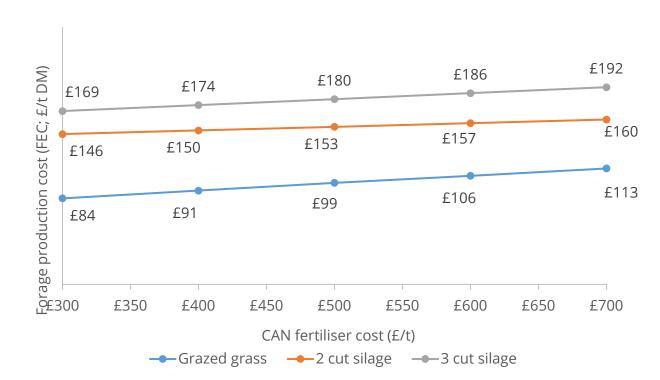


Introduction

- Significant rise in farm-gate fertiliser prices autumn 2021 spring 2022
- High degree of uncertainty of prices for 2022 season
- Questions:
 - How does this impact the cost of forage production?
 - Is it still cost-effective to spread fertiliser?
 - How do I maximise value of this fertiliser?

Note: Last observation is October 2021. DAP = diammonium phosphate. MOP = muriate of potash. Source: Bloomberg, World Bank.

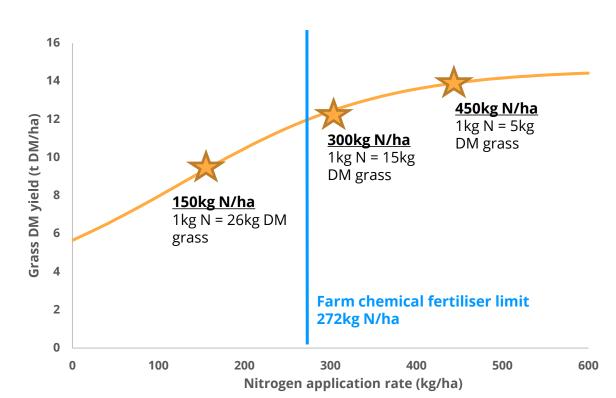
Global fertiliser prices 2008 to 2021



Impact of rising fertiliser prices on cost of forage production

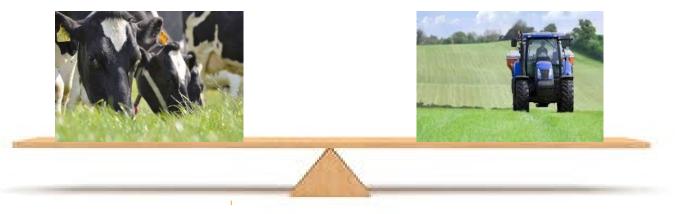
- Fertiliser costs typically account for around 25%, 12% and 18% of the full economic cost of producing 1 kg of forage either as grazed grass, two cut silage or three cut silage, respectively
- CAN fertiliser price increases from £300 to £600/t equate to c. £11 – 22 increase in forage production costs per tonne DM
- For a typical 40ha grazing platform this increase equates to an additional expenditure of £8,940/yr
- For a 40ha silage platform the increase equals £5,161 and £7,868/yr under 2-cut and 3-cut silage management, respectively.

Impact of CAN fertiliser price (\pounds/t) on full economic costs of forage production for grazed or ensiled grass


College of Agriculture, Food & Rural Enterprise

N response curves

- Grass growth response to fertiliser is influenced by a range of factors and can vary significantly between and within farms and seasons.
- As fertiliser application rate increases, N response rate decreases
 - Significant reductions in N response over 300kg N/ha
 - At high N application rates other factors become limiting e.g. temperature, soil moisture
- Grass yield data from the GrassCheck programme indicates:
 - Average N response rate of 20 kg DM grass per 1 kg of N fertiliser application
 - Higher response the more economical it is to spread fertiliser

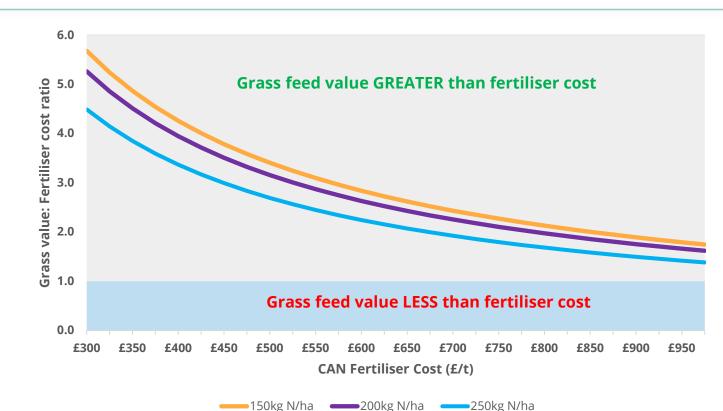

Impact of N application rate on grass growth response (kg DM)

College of Agriculture, Food & Rural Enterprise

Evaluating the cost - benefit of fertiliser application

• Compare the relative feed value of grass produced vs the cost of the fertiliser

- Values greater than 1.0 = grass feed value is greater than the fertiliser cost
- Values **less than 1.0** = grass feed value produced is **less** than the fertiliser cost
- Assumptions: Concentrate price = £300/tonne, Grass quality = 11.3 MJ/kg DM (Grasscheck farm average 2018 2021), grass utilisation rate = 80%

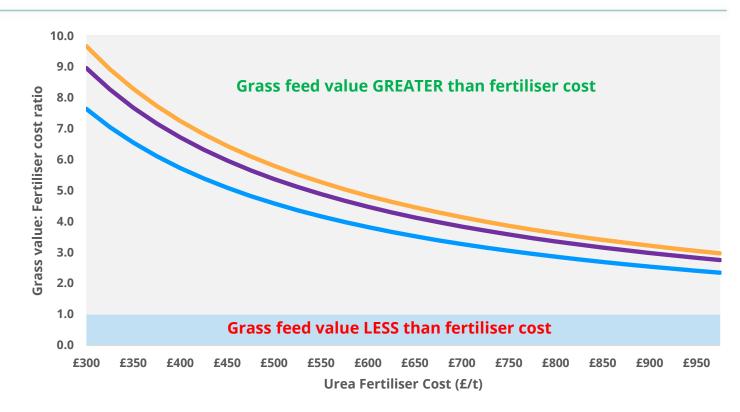


College of Agriculture, Food & Rural Enterprise

Cost-benefit of fertiliser application

- As the price of fertiliser rises the grass value-fertiliser cost ratio decreases
 - CAN @ £300/t = grass value 4.49 –
 5.68 times greater than fertiliser cost
 - CAN @ £600/t = grass value 2.25 –
 2.84 times greater than fertiliser cost
- As application rate increases, grass value: fertiliser cost ratio decreases
- However all curves, still remaining above a ratio of 1.0

Impact of CAN fertiliser cost on grass value-fertiliser cost ratio at three different N application rates


cafre

College of Agriculture, Food & Rural Enterprise

Cost-benefit of fertiliser application

- As the price of fertiliser rises the grass value-fertiliser cost ratio decreases
 - Urea @ £400/t = grass value 5.73 –
 7.25 times greater than fertiliser cost
 - Urea @ £800/t = grass value 2.86 –
 3.63 times greater than fertiliser cost
- As application rate increases, grass value: fertiliser cost ratio decreases
- However all curves, still remaining above a ratio of 1.0

——150kg N/ha ——200kg N/ha ——250kg N/ha

Impact of urea fertiliser cost on grass value-fertiliser cost ratio at three different N application rates

cafre

College of Agriculture, Food & Rural Enterprise

Factors affecting grass response to N fertiliser application

Impact of soil health on cost-benefit of fertiliser application

- Grass response to N fertiliser application impeded by: Poor soil structure Soil pH status
- Reduces cost effectiveness of fertiliser application

Impact of soil pH on utilisation of fertiliser N, P and K (Egan, 2017)

Soil pH	N utilisation	P utilisation	K utilisation	% of fertiliser wasted	
5.0 – 5.5	77%	48%	77%	32%	
5.5 – 6.0	85%	52%	100%	21%	
6.0 - 6.5	100%	100%	100%	0%	

Limited biological activity

Impact of low soil pH on the cost-benefit of fertiliser application

N fertiliser rate					
(kg/ha)	500	600	700	800	900
150	2.4	2.0	1.7	1.5	1.3
200	2.2	1.8	1.6	1.4	1.2
250	1.9	1.6	1.4	1.2	1.0

Values greater than 1.0 = grass feed value is greater than the fertiliser cost

Values **less than 1.0** = grass feed value produced is **less** than the fertiliser cost

College of Agriculture, Food & Rural Enterprise

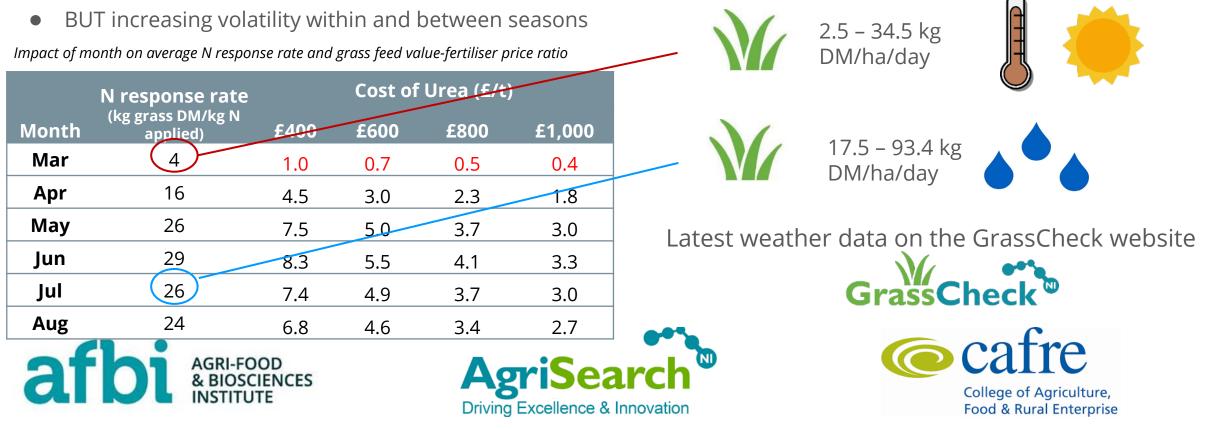
Impact of time of year on cost-benefit of fertiliser application

Driving Excellence & Innovation

Timing of, and conditions at fertiliser application can significant impact on grass response to N fertiliser application. GrassCheck data shows:

- Peak grass N response occurs May June
- Response in early spring is typically low due to light and temperature inhibiting growth
- BUT increasing volatility within and between seasons

Impact of month on average N response rate and grass feed value-fertiliser price ratio


	N response rate		Cost of	Urea (£/t)	
Month	(kg grass DM/kg N applied)	£400	£600	£800	£1,000
Mar	4	1.0	0.7	0.5	0.4
Apr	16	4.5	3.0	2.3	1.8
Мау	26	7.5	5.0	3.7	3.0
Jun	29	8.3	5.5	4.1	3.3
Jul	26	7.4	4.9	3.7	3.0
Aug	24	6.8	4.6	3.4	2.7
		00			

Impact of time of year on cost-benefit of fertiliser application

Timing of, and conditions at fertiliser application can significant impact on grass response to N fertiliser application. GrassCheck data shows:

- Peak grass N response occurs May June
- Response in early spring is typically low due to light and temperature inhibiting growth

Summary

- Recent fertiliser prices increases have had a significant impact on the cost of producing both grazed grass and grass silage
- Despite this, good quality grass remains the cheapest feedstuff available to N.I. farmers and the ratio of grass value to fertiliser costs is still positive in many cases (given the high cost of alternative feeds)
- However, with the increase in fertiliser price significant it is important to ensure maximum grass response from any fertiliser applied through good management practices:
 - Soil health
 - Timing of fertiliser application
 - Grass utilisation

Nutrient Management

- 1. Assessing Soil Nutrient/Health Status
- 2. Value of Nutrients on Farm
- 3. Planning Fertiliser Applications
- 4. Applying for Maximum Effect
- 5. NAP Regulatory Considerations

Soil Nutrient Status

Soil Analysis/Crop Requirement

Correct pH

Identify P & K indexes

DAERA Direct Soil Sampling Service

Effect of Soil pH on Fertiliser Utilisation

	% Utilisation			% Waste	Potential Fin	
Soil pH	Nitrogen	Phosphorus	Potassium	Fertiliser	Fertiliser @ £256/t	Fertiliser @ £600/t
5.0-5.5	77%	48%	77%	32%	£45.06	£106.6
5.5-6.0	85%	52%	100%	21%	£29.57	£69.99
6.0-6.5	100%	100%	100%	0%	£0	£0

Source: Teagasc, DAERA, 2017 150kg N/ha of 27-4-4 64% of soil samples below pH 6

Soil Health Status

Soil Structure

- > air & water movement
- biological activity
- crop establishment & root growth
- tolerance of stress

Sward Assessment

low yielding grassesproblem areas

Value of Manures

Manure Type	DM%		kg $@m^3$		Ur	nits @ 1000g	gal
		Ν	Р	К	Ν	Р	K
Cattle slurry	6	1	0.6	2.3	9	5	20
Pig slurry	4	1.8	0.75	2	16	16	18
			kg/tonne			Units/tonne	2
Cattle FYM	25	0.6	1.9	8.5	1.2	4	17
Broiler litter	66	9.9	9.6	14	20	19	28

Assuming spring application using LESSE Availability N 40%, P 50% (P Index 2) & K 90% of slurry

Planning Fertiliser Application

Online Services Home My Details Logout Help

Online Services Home > CAFRE Nutrient Calculators

Manure storage

Phosphorus balance

Crop nutrient calculator

Nitrogen loading

Manure Export

N Max for grassland

calculator

calculator

calculator

Calculator

CAFRE nutrient calculators

There are five CAFRE nutrient calculators which will help you with the Nitrates Action Programme (NAP) measures on nutrient limits, manure storage requirements and record keeping.

Nitrogen loading calculator Check if you are below the 170kg N/ha/year limit or if operating under a derogation the 250kg N/ha/year limit Check that nitrogen applications to the whole grassland area on the farm do not exceed the NAP limits

Crop nutrient calculator

Helps you to comply with nutrient limit requirements and draw up a nutrient management plan (NMP) for your farm

Phosphorus balance calculator

Calculate the P balance for your farm and help manage P inputs and outputs to meet the limit

Calculate the weekly slurry, dirty water, manure production and current storage capacity for your farm

How much fertiliser is required?

Crop Nutrient Calculator

Return to Fields List Help Manual Conversion Calculator

Field(s): 1/103/017 - Silage fields (P2K2-)

Year: 2021

Silage 68-70D Silage

Add/edit field plan

Enter your field, soil & cropping details for this field plan by clicking on the boxes below.

Field & soil details Field: Silage fields (P2K2-)

Crop:

Manure & fertiliser Manure & amp; Fertiliser Added

Download field plan Download PDF report

What is crop recommendation?

Cafre

College of Agriculture, Food & Rural Enterprise

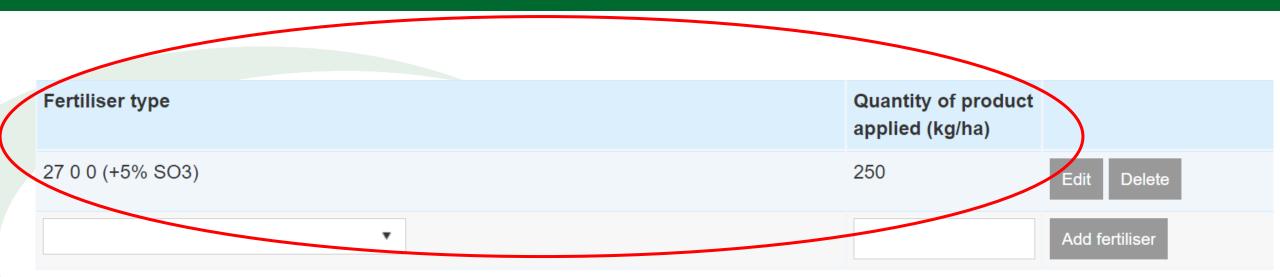
Applying organic manure

Livestock Manure

Manure type		Volume applied (m ³ /ha & t/ha)	Method of application		When applied	
Dairy Cow Slurry 6% Dry Matter *	•	22	Slurry - Trailing shoe or Band spread	•	Spring •	Update Cancel
	Ŧ			¥	×	Add Manure
* Turisellu de metterie COV for settle slum						

* Typically dry matter is 6% for cattle slurry and 4% for pig slurry.

Other Organic Manure (e.g., sewage sludge, abattoir waste, digestate)


Enter the type, volume applied and nutrient content on a fresh weight basis as outlined on the analysis report in g/kg. Use the calculator to convert from P to P₂O₅ and K to K₂O.

Manure type	Volume applied (m ³ /ha & t/ha)	Nitrogen (g/kg N)	Phosphate (g/kg P ₂ O ₅)	Potash (g/kg K ₂ O)	
					Add Manure

Applying chemical fertiliser

Other fertilisers

Fertiliser name	Quantity of product applied (kg/ha)	Nitrogen (% N)	Phosphate (% P ₂ O ₅)	Potash (% K ₂ O)	
					Add fertiliser

Crop Nutrient Summary for this field

Silage Cut 1

	Nitrogen (N)	Phosphate (P ₂ O ₅)	Potash (K ₂ O)
Total crop recommendation	120.00 kg/ha	40.00 kg/ha	80.00 kg/ha
	96.00 units/acre	32.00 units/acre	64.00 units/acre
Organic manure - nutrients supplied	22.88 kg/ha	26.40 kg/ha	49.50 kg/ha
	18.30 units/acre	21.12 units/acre	39.60 units/acre
Chemical fertiliser - nutrients supplied	84.38 kg/ha	0.00 kg/ha	0.00 kg/ha
	67.50 units/acre	0.00 units/acre	0.00 units/acre
Nutrients to be supplied	-12.75 kg/ha	-13.60 kg/ha	-30.50 kg/ha
	-10.20 units/acre	-10.88 units/acre	-24.40 units/acre
	(undersupplied)	(undersupplied)	(undersupplied)

Fertiliser Budgeting

Crop Nutrient Calculator Summary Report

2. Organic Manure Totals

Organic Manure	Total Quantity
Dairy Cow Slurry 6% Dry Matter	2392 m ³ (526350 gallons)

3. Chemical Fertiliser Totals

Chemical Fertiliser	Total Quantity
0 0 60	2250 kg
27 0 0 (+5% SO3)	35000 kg
46 0 0	3125 kg

Applying to maximum effect

• Timing

- > apply early in the season
- Application method
 - use of LESSE
- Equipment
 - regular maintenance & calibration
- Accurate application
 - make use of available technology

Regulatory Requirements

Observe buffer zones from waterways

- chemical fertiliser 2m
- slurry 10m (3m LESSE) increased to 15 (5m LESSE) in Feb

Prepare a fertilisation plan

- chemical phosphate fertiliser
- high phosphorus (P) manures
- anaerobic digestate

Crop Nutrient Report

Name:	MS AVEEN MCMULLAN		Report Year: 2021
Address:	RATHKELTAIR HOUSE MARKET STREET DOWNPATRICK CO.DOWN BT30 6LZ		
Farm Survey Number:	1/103/017	Soil Type:	Medium soils
Field Number:	Dairy grazing (P2+K2+)	Soil Analysis Date:	Jan 2021
Field Size:	25 hectares	P Index:	2+
	(61.78 acres)	K Index:	2+
		pH:	6.3
		Soil Nitrogen Status (SNS):	Moderate
Last Crop:	Grass moderate input (100 - 250 kg N/ha)		
Next Crop:	Grazing Dairy Cow Rotational		

	Nitrogen (N)	Phosphate (P2O3)	Potash (K ₂ 0)
Total Crop Requirement:	340.00 kg/ha (272.00	20.00 kg/ha (16.00 units/scre)	0.00 kg/ha (0.00 units/acre)
	unitalacre)		
Organic Manure Nutrients:	11.44 kg/ha (9.15 units/acre)	13.20 kg/ha (10.55 units/acre)	24.75 kg/ha (19.80 units/acre)
Fertiliser Nutrients:	192.50 kg/ha (154.00	0.00 kg/ha (0.00 units/acre)	0.00 kg/ha (0.00 units/scre)
	units/acre)		
Nutrients to be Supplied:	- 136 kg/ha (- 109 units/scre)	- 7 kg/ha (- 6 unitsiscre)	+ 25 kg/ha (+ 20 unitatione)
	(undersupplied)	(undersupplied)	(oversupplied)

Organic Manure to be Applied

Manure Type	Volume Applied	Method of Application	When Applied
Dairy Cow Slurry 6% Dry Matter	11 m²/ha	Slurry - Trailing shoe or Band spread	Spring

	Fertiliser to be Applied			
	Fertiliser Type	Quantity of Product Applied		
	46 0 0	125 kg/ha		
	27 0 0 (+5% SO3)	500 kg/ha		

Improve Soil Fertility

Target manures and top up with chemical fertiliser

Use a fertilisation plan

Fertiliser use on farm - 2022

Robert Patterson Dairying technologist - CAFRE

Application Considerations

Fertilizer Efficiency = Grass and Crop Performance/Purchased Fertiliser Input

- Soil Temperature
- Field Specific Plan Nutrients Action Plan
- Rotational Sowing Little and Often
- Record Fertiliser Use and Grass Growth
- Sower Accuracy
- Sulphur

- > Optimal levels of soil fertility pH 6.2, P index 2+, K index 2+
- > Target slurry application 22.5 28 m³/ ha (2,000 2,500 gallons acre) LESSE
- > DAERA Online Crop Nutrient Calculator develop nutrient management plans
- > Scenarios optimal fertiliser and grass growth responses in spring

Scenario 1 – First cut silage (cutting date early – mid May)

Applying 28 m³/ ha (2,500 gallons/ acre) slurry (LESSE) = 29 kg N/ ha, 34 kg P_2O_5 / ha and 63 kg K_2O / ha

Additional Nitrogen requirement = 91 kg N/ha

(Eg. 91 kg N/ha = Applying 330 kg/ha (2.7 bags/ acre) 27 % CAN

Consider split applications to increase efficiency of uptake

Scenario 2 – Grazing turnout – February/Early March

> Walk the grazing platform late January to determine paddock covers and the average farm cover

Slurry

- Mid February slurry (1/3) paddocks with the lowest covers (below 2,100 kg DM/ha or 6cm) (22.5 m³/ ha or 2,000 gallons/ac) – supplies 23 kg N/ ha (19 units/ acre)
- > Apply slurry to the remainder of the grazing platform suitable once grazed off

Fertiliser

- > Apply early nitrogen in February to paddocks which will respond
- > 30 kg N/ha (23 units/acre) eg Protected urea
- Don't apply to paddocks which received slurry in the first round
- > Apply to paddocks with covers greater than 1,900 kg DM/ha or 5cm
- Rotationally apply nitrogen following grazing

Scenario 3 – Grazing turnout –Early/Mid April

> Walk the grazing platform late January to determine paddock and average farm covers

Slurry

Apply Slurry to the grazing platform on grass covers below 2,500 Kg DM/ha or 7.5cm when conditions are suitable via LESSE (22.5 m³/ ha or 2,000 gallons/ac) – supplies 23 kg N/ ha (19 units/ acre)

Fertiliser

- No requirement for nitrogen to be applied February/early March
- Prioritise covers which have not received slurry to graze first
- Rotationally apply nitrogen following the first grazing

Only apply fertiliser in February / early March if you can utilise the grass and conditions are right

Apply recommended levels of nutrients to maximise your first cut yield – best response per kg of Nitrogen (DAERA Online Calculators)

Focus on controlling factors within your control to maximise your fertiliser efficiency – measure & budget grass to increase utilisation

Leading | Protecting | Enhancing

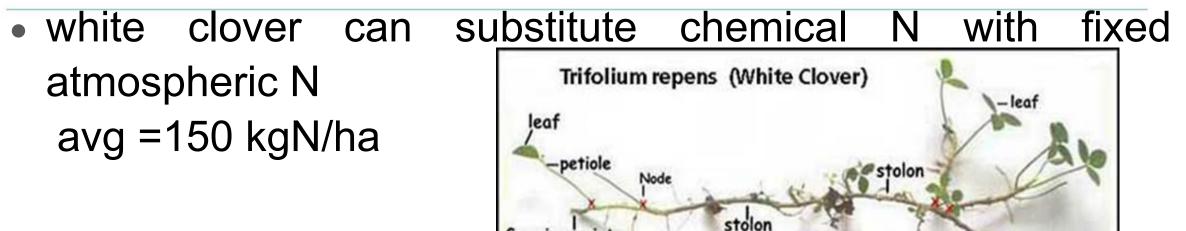
Reducing reliance on fertiliser N

David Patterson Jan 2022

afbini.gov.uk

Reducing reliance on fertiliser N

- increase species diversity to deliver more sustainable grassland
- use of legumes to fix biological N
- white & red clover



Increase Diversity: Step by Step

Features of Grass/ White Clover

 ideal for grazing swards (stoloniferous) AND its growth complements perennial ryegrass (PRG)

roots-

Growing point

higher DM intakes due to the higher digestibility of WC

afbi AGRI-FOOD (less cellulose and lignin)

Features of Red Clover

- grass/ red clover mix
- 14-16 tDM/ha 18-22%CP
- persists for 2 4 years
- upright habit, elevated growing point

Grass/White Clover Productivity

	GRASS ONLY	GRASS/ WHITE CLOVER	
Fertiliser kgN/ha	250	150	n.b. • same SRate • same meal • 20% WC
Herbage Yield tDM/ha	13.5	13.4	
Milk solids kg/cow	489	510	
N use efficiency %	37	55	

Ref:Teagasc Moorepark

but there are challenges...

- less predictable spring yields of clover
- less out-of-season growth
- perception of poor clover persistency
- bloat incidence
- establishing clover into new and existing swards

Summary

- grass/clover sward can substitute fertiliser N and improve herbage digestibility
- establishment and persistency challenges
- different management strategy

Key Messages

- Recent fertiliser price increases will significantly increase the cost of producing both grazed grass and grass silage.
- However, good quality grass remains the cheapest feedstuff available on NI farms and in most cases, it is still economic to apply chemical N up to 200 kg N/ha, providing grass is well utilised.
- Maximise grass response from fertiliser applied through good management practices:
 - Soil health (pH, P and K) Timing of fertiliser application Good grass utilisation
- Slurry and manures are valuable sources of nutrients nutrient management planning is critical
- Longer term white/red clover have significant potential to reduce reliance on N fertiliser

Forthcoming Webinars

31 st January	Beef & Sheep Fertiliser Planning	
1 st February	Arable Conference: Understanding Carbon in Arable Rotations	
2 nd February	Sheep Conference: Pasture Productivity	
7 th February	Targeted Selective Treatment of Anthelmintics: An introduction	
8 th February	Arable Conference: Nitrogen & Biopesticides	
9 th February	Sheep Conference: Resilience through Health & Environment	
22 nd & 24 th February	Ulster Grassland Society Annual Conference: Efficiency Driving a Lower Carbon Footprint	
1 st March	Multi-Species Swards: A View from the Farm	