

Agenda

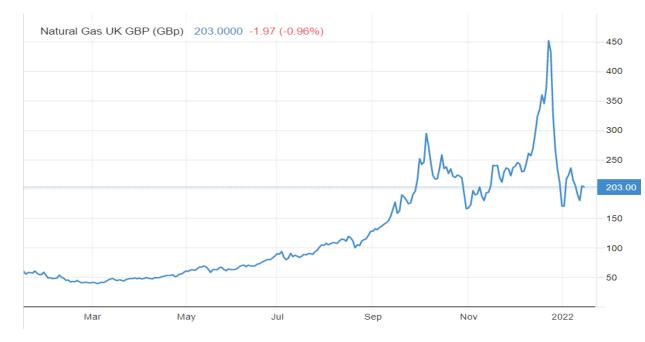
8.00	Welcome & Introduction	Seamus McCaffrey, AgriSearch
8.05	Fertiliser Planning for 2022: costs-benefit of fertiliser application	Debbie McConnell, AFBI
8.25	Nutrient Management – Back to Basics	Aveen McMullan, CAFRE
8.35	Fertiliser use on farm - 2022	Rachel McGarrell, CAFRE
8.50	Reducing reliance on fertiliser N	David Patterson, AFBI
9.00	Questions & Answers	

AGRI-FOOD & BIOSCIENCES INSTITUTE

Leading | Protecting | Enhancing

Webinar

Fertiliser planning for 2022: cost-benefit of fertiliser application



Dr Debbie McConnell

Jan 2022 afbini.gov.uk

Introduction

- Nitrogen is a key nutrient in grassland production systems
- N.I. imports 342,000 tonnes of fertiliser per annum, of which 86,700 tonnes is nitrogen (N; DAERA, 2021)
- Contracted supply of fertilisers across Europe due to:
 - Significant rise in energy costs impacting fertiliser manufacture, particularly in Europe
 - COVID disruptions to both production and transport infrastructure of fertilisers
 - Global reduction in fertiliser exports

UK natural gas prices during 2021

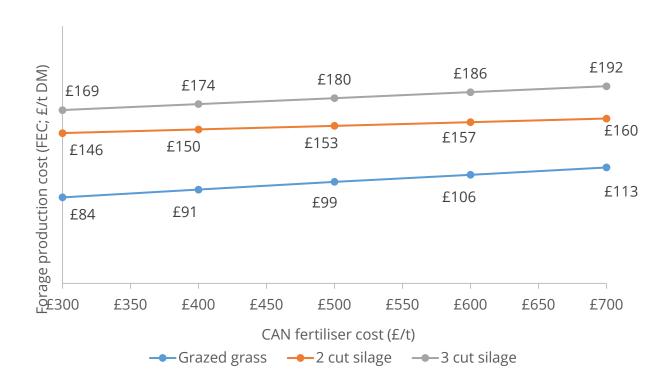


Introduction

- Significant rise in farm-gate fertiliser prices autumn 2021 spring 2022
- High degree of uncertainty of prices for 2022 season
- Questions:
 - How does this impact the cost of forage production?
 - Is it still cost-effective to spread fertiliser?
 - How do I maximise value of this fertiliser?

Note: Last observation is October 2021. DAP = diammonium phosphate. MOP = muriate of potash. Source: Bloomberg, World Bank.

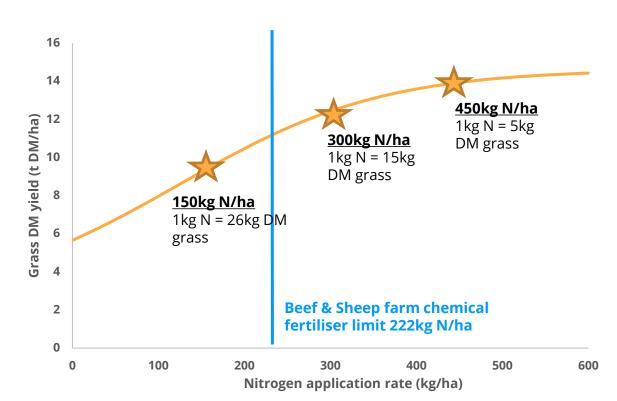
Global fertiliser prices 2008 to 2021



Impact of rising fertiliser prices on cost of forage production

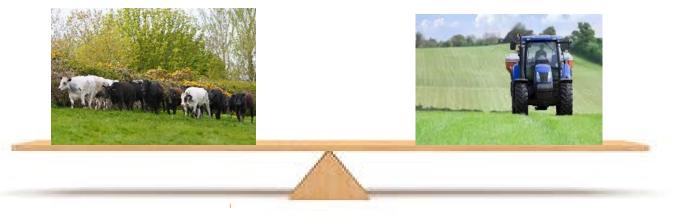
- Fertiliser costs typically account for around 25%, 12% and 18% of the full economic cost of producing 1 kg of forage either as grazed grass, two cut silage or three cut silage, respectively
- CAN fertiliser price increases from £300 to £600/t equate to c. £11 – 22 increase in forage production costs per tonne DM
- For a typical 20ha grazing platform this increase equates to an additional expenditure of £4,470/yr
- For a 20ha silage platform the increase equals £2,580 and £3,934/yr under 2-cut and 3-cut silage management, respectively.

Impact of CAN fertiliser price (\pounds/t) on full economic costs of forage production for grazed or ensiled grass


College of Agriculture, Food & Rural Enterprise

N response curves

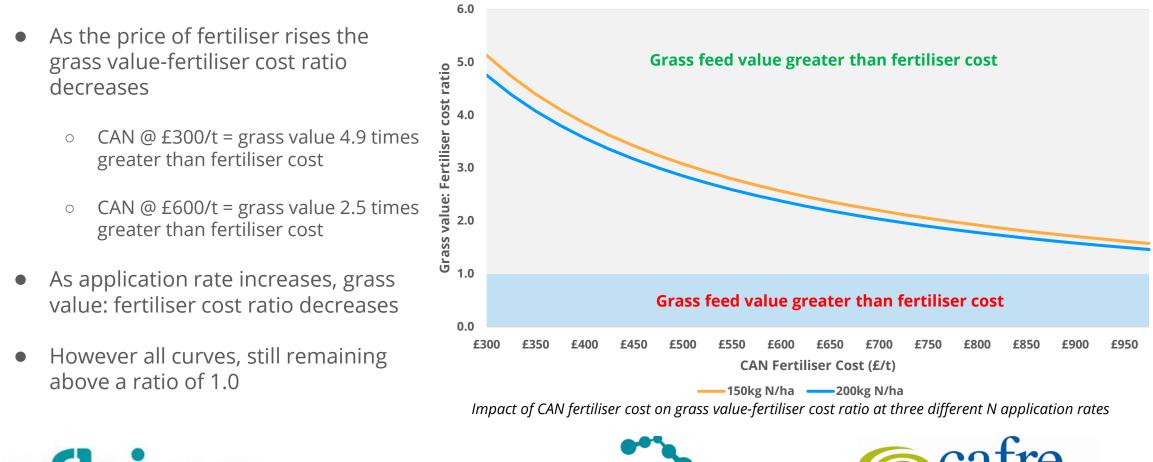
- Grass growth response to fertiliser is influenced by a range of factors and can vary significantly between and within farms and seasons.
- As fertiliser application rate increases, N response rate decreases
 - Significant reductions in N response over 300kg N/ha
 - At high N application rates other factors become limiting e.g. temperature, soil moisture
- Grass yield data from the GrassCheck programme indicates:
 - Average N response rate of 20 kg DM grass per 1 kg of N fertiliser application
 - Higher response the more economical it is to spread fertiliser


Impact of N application rate on grass growth response (kg DM)

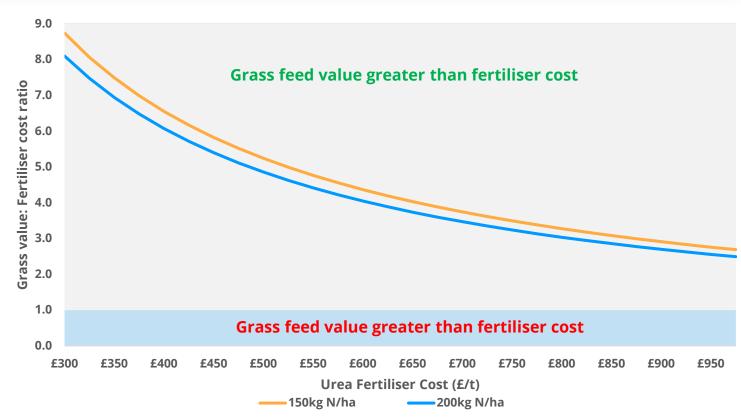
College of Agriculture, Food & Rural Enterprise

Evaluating the cost - benefit of fertiliser application

• Compare the relative feed value of grass produced vs the cost of the fertiliser


- Values greater than 1.0 = grass feed value is greater than the fertiliser cost
- Values **less than 1.0** = grass feed value produced is **less** than the fertiliser cost
- Assumptions: Concentrate price = £270/tonne, Grass quality = 11.3 MJ/kg DM (GrassCheck farm average 2018 2021), grass utilisation rate = 80%

Cost-benefit of fertiliser application



Cost-benefit of fertiliser application

- As the price of fertiliser rises the grass value-fertiliser cost ratio decreases
 - Urea @ £400/t = grass value 6.4 times greater than fertiliser cost
 - Urea @ £800/t = grass value 3.1 times greater than fertiliser cost
- As application rate increases, grass value: fertiliser cost ratio decreases
- However all curves, still remaining above a ratio of 1.0

Impact of urea fertiliser cost on grass value-fertiliser cost ratio at three different N application rates

cafre

Factors affecting grass response to N fertiliser application

Impact of soil health on cost-benefit of fertiliser application

- Grass response to N fertiliser application impeded by: Poor soil structure Soil pH status
- Reduces cost effectiveness of fertiliser application

Impact of soil pH on utilisation of fertiliser N, P and K (Egan, 2017)

Soil pH	N utilisation	P utilisation	K utilisation	% of fertiliser wasted	
5.0 – 5.5	77%	48%	77%	32%	
5.5 – 6.0	85%	52%	100%	21%	
6.0 - 6.5	100%	100%	100%	0%	

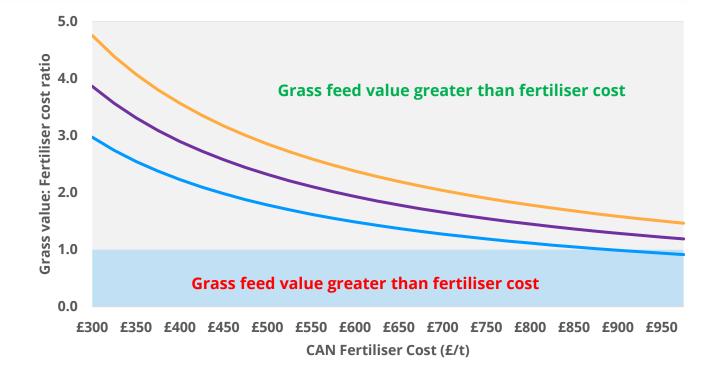
Limited biological activity

Impact of low soil pH on the cost-benefit of fertiliser application

N fertiliser rate	Cost of CAN (£/t)						
(kg/ha)	500	600	700	800	900		
150	2.4	2.0	1.7	1.5	1.3		
200	2.2	1.8	1.6	1.4	1.2		
250	1.9	1.6	1.4	1.2	1.0		

Values greater than 1.0 = grass feed value is greater than the fertiliser cost

Values **less than 1.0** = grass feed value produced is **less** than the fertiliser cost



Impact of grass utilisation on cost-benefit of fertiliser application

Driving Excellence & Innovation

- Returns from N fertiliser application can be improved by increasing grass utilisation rates
- Grazing system (AHDB, 2018):
 - Set stocking = 40%
 - Rotational grazing = 65%
 - Paddock grazing = 80%

— 50% — 65% — 80%

Impact of CAN fertiliser cost on grass value-fertiliser cost ratio at three different grass utilisation rates

College of Agriculture, Food & Rural Enterprise

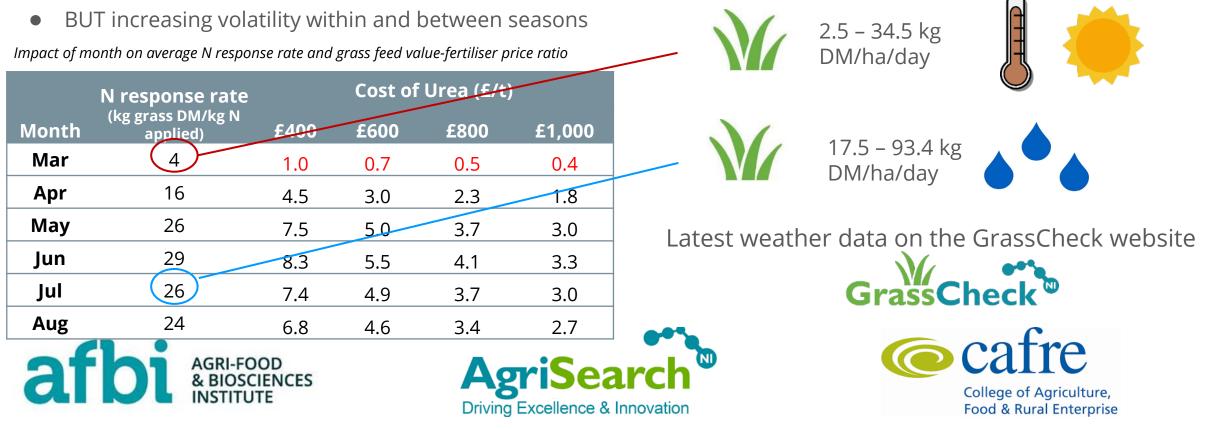
Impact of time of year on cost-benefit of fertiliser application

Driving Excellence & Innovation

Timing of, and conditions at fertiliser application can significant impact on grass response to N fertiliser application. GrassCheck data shows:

- Peak grass N response occurs May June
- Response in early spring is typically low due to light and temperature inhibiting growth
- BUT increasing volatility within and between seasons

Impact of month on average N response rate and grass feed value-fertiliser price ratio


	N response rate		Cost of		
Month	(kg grass DM/kg N applied)	£400	£600	£800	£1,000
Mar	4	1.0	0.7	0.5	0.4
Apr	16	4.5	3.0	2.3	1.8
Мау	26	7.5	5.0	3.7	3.0
Jun	29	8.3	5.5	4.1	3.3
Jul	26	7.4	4.9	3.7	3.0
Aug	24	6.8	4.6	3.4	2.7
		00			

Impact of time of year on cost-benefit of fertiliser application

Timing of, and conditions at fertiliser application can significant impact on grass response to N fertiliser application. GrassCheck data shows:

- Peak grass N response occurs May June
- Response in early spring is typically low due to light and temperature inhibiting growth

Summary

- Recent fertiliser prices increases have had a significant impact on the cost of producing both grazed grass and grass silage
- Despite this, good quality grass remains the cheapest feedstuff available to N.I. farmers and the ratio of grass value to fertiliser costs is still positive in many cases (given the high cost of alternative feeds)
- However, with the increase in fertiliser price significant it is important to ensure maximum grass response from any fertiliser applied through good management practices:
 - Soil health
 - Timing of fertiliser application
 - Grass utilisation

Nutrient Management

- 1. Assessing Soil Nutrient/Health Status
- 2. Value of Nutrients on Farm
- 3. Planning Fertiliser Applications
- 4. Applying for Maximum Effect
- 5. NAP Regulatory Considerations

Soil Nutrient Status

Soil Analysis/Crop Requirement

Correct pH

Identify P & K indexes

DAERA Direct Soil Sampling Service

Effect of Soil pH on Fertiliser Utilisation

		% Utilisation		% Waste	Potential Fin	
Soil pH	Nitrogen	Phosphorus	Potassium	Fertiliser	Fertiliser @ £256/t	Fertiliser @ £600/t
5.0-5.5	77%	48%	77%	32%	£45.06	£106.6
5.5-6.0	85%	52%	100%	21%	£29.57	£69.99
6.0-6.5	100%	100%	100%	0%	£0	£0

Source: Teagasc, DAERA, 2017 150kg N/ha of 27-4-4 64% of soil samples below pH 6

Soil Health Status

Soil Structure

- > air & water movement
- biological activity
- crop establishment & root growth
- tolerance of stress

Sward Assessment

- Iow yielding grasses
- > problem areas

Value of Manures

Manure Type	DM%	kg @ m ³		Ur	nits @ 1000g	gal	
		Ν	Р	К	N	Р	К
Cattle slurry	6	1	0.6	2.3	9	5	20
Pig slurry	4	1.8	0.75	2	16	16	18
			kg/tonne			Units/tonne	2
Cattle FYM	25	0.6	1.9	8.5	1.2	4	17
Broiler litter	66	9.9	9.6	14	20	19	28

Assuming spring application using LESSE Availability N 40%, P 50% (P Index 2) & K 90% of slurry

Planning Fertiliser Application

Online Services Home My Details Logout Help

Manure storage calculator

Phosphorus balance calculator

Crop nutrient calculator

Nitrogen loading calculator

N Max for grassland

Manure Export Calculator Online Services Home > CAFRE Nutrient Calculators

CAFRE nutrient calculators

There are five CAFRE nutrient calculators which will help you with the Nitrates Action Programme (NAP) measures on nutrient limits, manure storage requirements and record keeping.

Nitrogen loading calculator

Check if you are below the 170kg N/ha/year limit or if operating under a derogation the 250kg N/ha/year limit

N Max for grassland calculator

Check that nitrogen applications to the whole grassland area on the farm do not exceed the NAP limits

Crop nutrient calculator

Helps you to comply with nutrient limit requirements and draw up a nutrient management plan (NMP) for your farm

Phosphorus balance calculator

Calculate the P balance for your farm and help manage P inputs and outputs to meet the limit

Manure storage calculator

Calculate the weekly slurry, dirty water, manure production and current storage capacity for your farm

How much fertiliser is required?

Crop Nutrient Calculator

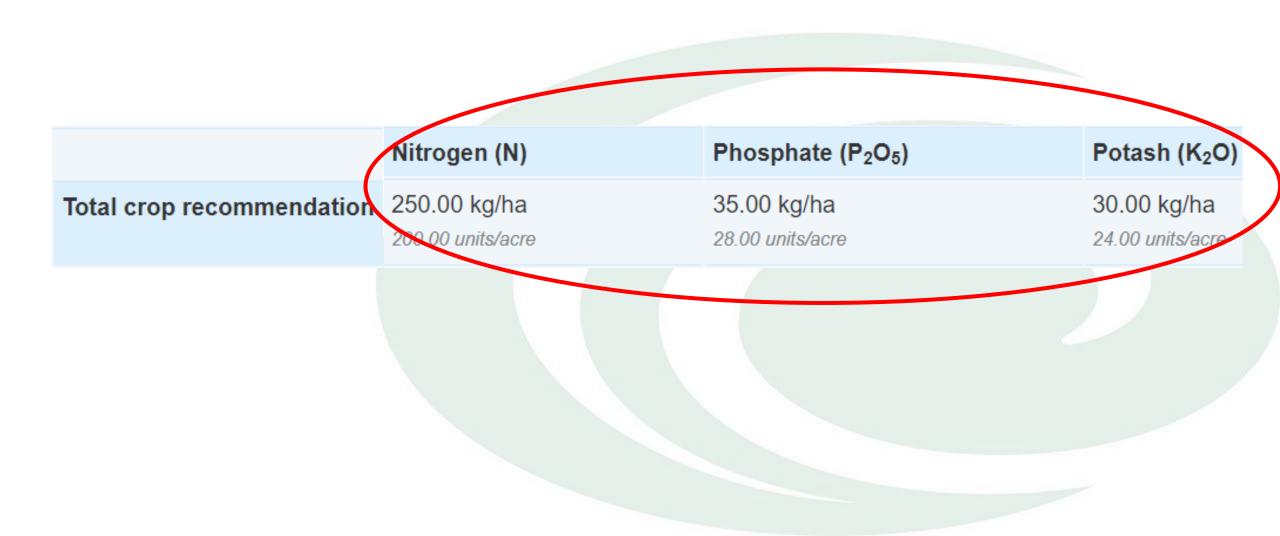
Field(s): 1/123/456 - B&S Grazing 1 (P2-K1) Year: 2022 Crop: Grazing Beef and Sheep	Return to Fields List	Help Manual	Conversion Calculator				
Liold(o): Altrating USE Croting 1 (ULK) Voor: (Croting Uoot and Shoon	Field(s): 1/	14221456 090	Crozing 1 (P2 K1)	Year:	2022	Crop:	Grazing Beef and Sheep

Add/edit field plan

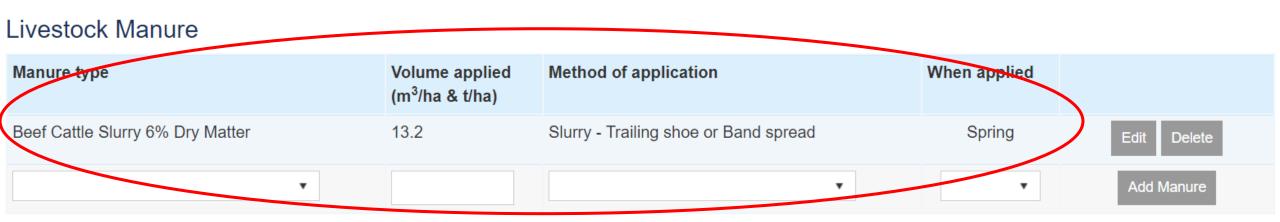
Enter your field, soil & cropping details for this field plan by clicking on the boxes below.

Field & soil details Field: B&S Grazing 1 (P2-K1)

Cropping Grazing Beef and Sheep


Manure & fertiliser Manure & amp; Fertiliser Added

Download field plan Download PDF report


What is crop recommendation?

Applying organic manure

* Typically dry matter is 6% for cattle slurry and 4% for pig slurry.

Other Organic Manure (e.g., sewage sludge, abattoir waste, digestate)

Enter the type, volume applied and nutrient content on a fresh weight basis as outlined on the analysis report in g/kg. Use the calculator to convert from P to P_2O_5 and K to K_2O_5 .

Manure type	Volume applied (m ³ /ha & t/ha)	Nitrogen (g/kg N)	Phosphate (g/kg P ₂ O ₅)	Potash (g/kg K ₂ O)	
					Add Manure

Applying chemical fertiliser

Known fertilisers ** ** Northern Ireland Fertiliser list 2	008 compiled by DAERA Quality Assurance	ce Branch.			
Fertiliser type			Quantity of product appli	ied (kg/ha)	
27 0 0 (+5% SO3)			250	Edit Del	ete
	•			Add fertilise	er
Other fertilisers					
Fertiliser name	Quantity of product applied (kg/ha)	Nitrogen (% N)	Phosphate (% P ₂ O ₅)	Potash (% K ₂ O)	
					Add fertiliser

Field(s): 1/123/456 - B&S Grazing 1 (P2-K1)		Year:	2022	Crop:	Grazing	g Beef and Sheep	
Chemical Fertiliser to be Applied							
	Nitrogen (N)		Phosphate	(P ₂ O ₅)	Potash (M	(₂ O)
Total crop recommendation	250.00 kg/ 200.00 units/			35.00 kg/ha 28.00 units/aci		30.00 kg/h 24.00 units/a	
Organic manure - nutrients supplied	13.73 kg/h 10.98 units/ad			15.84 kg/ha 12.67 units/aci		29.70 kg/ł 23.76 units/a	
Chemical fertiliser - nutrients supplied	67.50 kg/h 54.00 units/a			0.00 kg/ha 0.00 units/acre)	0.00 kg/ha	
Nutrients to be supplied	-168.77 kg -135.02 units (undersup)	/acre		-19.16 kg/h -15.33 units/ad (undersupp	re	-0.30 kg/h -0.24 units/a (undersup	icre

Crop Nutrient Calculator Summary Report

2. Organic Manure Totals

Organic Manure	Total Quantity
Beef Cattle Slurry 6% Dry Matter	715 m ³ (157300 gallons)

3. Chemical Fertiliser Totals

Chemical Fertiliser	Total Quantity
27 0 0 (+5% SO3)	7250 kg
27 4 4 (+6% SO3)	2250 kg

Applying to maximum effect

• Timing

- > apply early in the season
- Application method
 - use of LESSE
- Equipment
 - regular maintenance & calibration
- Accurate application
 - make use of available technology

Regulatory Requirements

Observe buffer zones from waterways

- chemical fertiliser 2m
- slurry 10m (3m LESSE) increased to 15 (5m LESSE) in Feb

Prepare a fertilisation plan

- chemical phosphate fertiliser
- high phosphorus (P) manures
- anaerobic digestate

Crop Nutrient Report

Name: Address:	MS AVEEN MCMULLAN RATHKELTAIR HOUSE MA	RKET STREET	Report Year: 2022
Address.	DOWNPATRICK CO.DOWN		
Farm Survey Number:	1/123/456	Soil Type:	Medium soils
Field Number:	B&S Grazing 1 (P2-K1)	Soil Analysis Date:	Jan 2022
Field Size:	20 hectares	P Index:	2-
	(49.42 acres)	K Index:	1
		pH:	6.3
		Soil Nitrogen Status (SNS):	High
Last Crop:	Grass high input (over 250kg	g N/ha)	
Next Crop:	Grazing Beef and Sheep		
	Nitrogen (N)	Phosphate (P ₂ O ₅)	Potash (K ₂ 0)
Total Crop Requirement:	250.00 kg/ha (200.00	35.00 kg/ha (28.00 units/scre)	30.00 kg/ha (24.00 units/acre
	units/acre)		
Organic Manure Nutrients:	units/acre) 13.73 kg/ha (10.98 units/acre)	15.84 kg/ha (12.67 units/acre)	29.70 kg/ha (23.76 units/acre
Organic Manure Nutrients: Fertiliser Nutrients:		15.84 kg/ha (12.67 units/acre) 0.00 kg/ha (0.00 units/acre)	29.70 kg/ha (23.76 units/acre 0.00 kg/ha (0.00 units/acre)

Organic Manure to be Applied

Manure Type		Volume Applied	Method of Application	When Applied		
Beef Cattle Slurry 6% Dry	Matter	13.2 m³/ha	Slurry - Trailing shoe or Band spread	Spring		

Fertiliser to be Applied

Fertilis

iser to be Applied					
ser Type	Quantity of Product Applied				
0 (+5% SO3)	250 kg/ha				

Improve Soil Fertility

Use a fertilisation plan

> Target manures and top up with chemical fertiliser

CAFRE-Practical advice and scenarios.

Rachel Megarrell, CAFRE Beef and Sheep adviser.

© cafre Do we really need to sow fertiliser?^{College of Agriculture,} Food & Rural Enterprise

- Yes to achieve target silage and grazing yields.
- Every kg of fertiliser purchased must count! If fertiliser is used efficiently then a good grass growth response will be achieved per kg of fertiliser sowed.
- Nitrogen, Phosphorus and Potassium are the major nutrients required for plant growth. When P & K are at optimum levels the response from N applied is the greatest.
- 'Aim to use purchased fertiliser in a smart way'

© cafre Reasons for inefficient fertiliser uptake College of Agriculture, Food & Rural Enterprise

- Inappropriate timing and application of fertiliser.
- Inappropriate timing and application of slurry/manure.
- Soil pH too low.
- Soil type.
- Poor sward quality.
- Poor grassland management.

Forward planning

- Winter feeding strategy.
- Have you set a sales plan for stock that are currently on farm?
- From this set targets for silage quality relative to:
 - Calving pattern
 - Beef finishing system
 - Land type
 - Sward type

Fodder budget

	Number of stock	Daily silage req/head (kg)	Total daily req (kg)	Housing date	Turnout date	Days	Monthly requirement (tonnes)	Winter requirement (tonnes)
Ewes	180	5	900	10/01/2022	01/04/2022	81	27	73
Suckler cows	40	35	1400	15/10/2022	15/04/2023	182	42	255
Steers (300kg)	20	22	440	15/10/2022		182	13	80
Heifers (300kg)	20	22	440	15/10/2022	15/04/2023	182	13	80
			0.9				95	488t (500t)

How are you going to make this silage?

- 2 cut scenario;
- Av 1st cut yield of 8t/ac
- Av 2nd cut yield of 6t/ac
- TOTAL of 14t/acre required to meet animal requirements (fresh weight)
 - Need 500 tonnes of fresh weight silage in the pit with silage land yielding 14t/ac fresh weight = (35.7) approx 40 acres of silage cut twice.
 - Assume There is a good quality grass sward, pH level is correct and P & K levels are optimum (therefore slurry applied meets crop need) *identified via a valid soil analysis report*

Fertiliser requirements

• 1st cut:

- Apply 120kgN/ha = 96 units/acre
- 2500 gallons of slurry in good conditions via LESSE will contribute approximately 22.5 units N/acre.
- This leaves 73.5 units N to be applied using artificial fertiliser. Using a 27% N product you need to apply 2.7 bags/ac.

• 2nd cut:

- Apply 100kgN/ha = 80 units/acre
- 2500 gallons of slurry in good conditions via LESSE as quickly as possible after 1st cut has been harvested will contribute approximately 22.5units N/acre.
- This leaves 57.5 units N to be applied using artificial fertiliser. Using a 27% N product you need to apply 2 bags/ac.

How much will it cost to grow this crop?

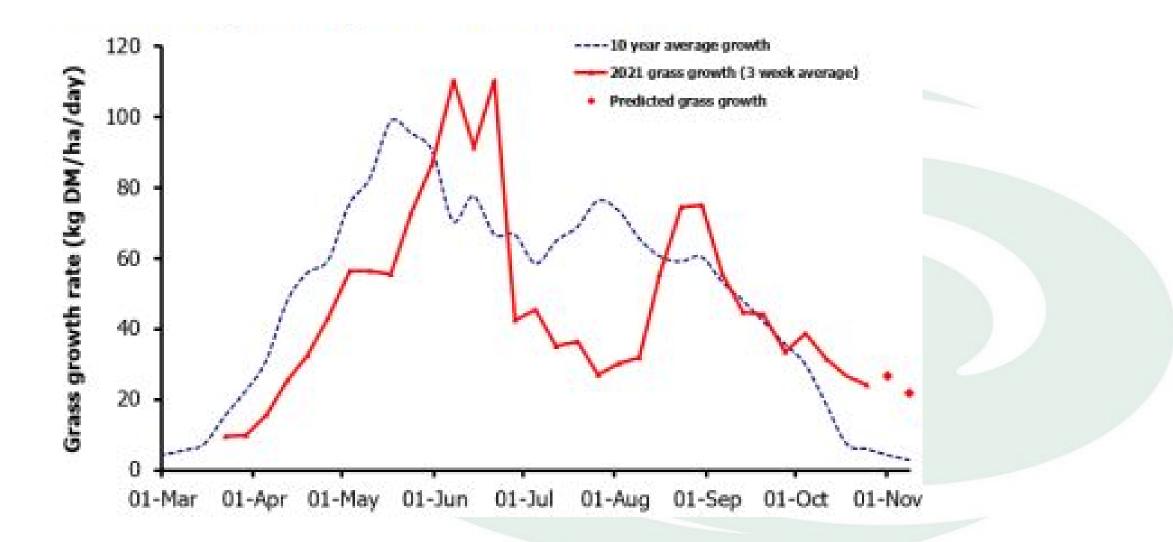
• Based on previous calculation we need 4.7 bags/ac to grow 2 cuts of silage.

Food & Rural Enterprise

- In 2021 27%N was £300/t equivalent to £15/bag.
- In 2022 27%N is £600/t equivalent to £30/bag.
- Therefore 4.7 bags applied per acre @ £30/bag = £70.50 /acre over 2 cuts.
- Aiming to achieve 14t fresh weight silage in the pit/acre = £70.50/14t = an extra £5/tonne to grow this crop.
- We need 9.4t 27% N fertiliser @ £600/t = £5640 of fertiliser to be purchased.
- Can you afford to do this?
- Can you afford not to do this!!!

College of Agriculture, Food & Rural Enterprise

Grazing


- Need to ensure that we are making the most of our grazed grass.
- Implement a paddock grazing system.
- Use of rising plate meter and associated technology to aid the decision making process and maximise grass utilisation.
- Apply nitrogen in correct conditions at the right time within the grazing season to achieve the best response.
- Consider the scope that you have to extend the grazing season on your farm.
- Check for areas of compaction on land as this will affect nutrient uptake and subsequent growth.

Grazing system, yield and utilisation College of Agriculture, Food & Rural Enterprise

System	Annual Yield (tDM/ha)	Utilisation (%)	Usable yield (%)	% Increase	
Set stocking	8.5	50	4.3		
Rotational	10.2	65	6.6	56%	
Paddock	10.2	80	8.2	92%	

Cafre Pay attention to the grass growth curve Food & Rural Enterprise

Ask yourself

- Do you know how much fertiliser you used last year and how it was distributed across your farm?
- How much grass is your farm growing/ha?
- Is the artificial N that I am purchasing and applying working as efficiently as it could?
- Can I use LESSE to apply slurry to maximise nitrogen availability?
- What is the pH status of the soil across your farm?
- Do you have a liming programme in place?
- Is there scope to reduce grass or silage demand?

Summary

- Well managed grass remains the cheapest feed available on livestock farms.
- Plan ahead to make the most of this valuable resource.
- Maximise availability of nutrients in organic manures.
- Target your artificial fertiliser applications.
- Use of the CAFRE crop nutrient calculator should be viewed as an essential tool when it comes to fertiliser planning this year.
- Expenditure on fertiliser must be clearly thought out.

Leading | Protecting | Enhancing

Reducing reliance on fertiliser N

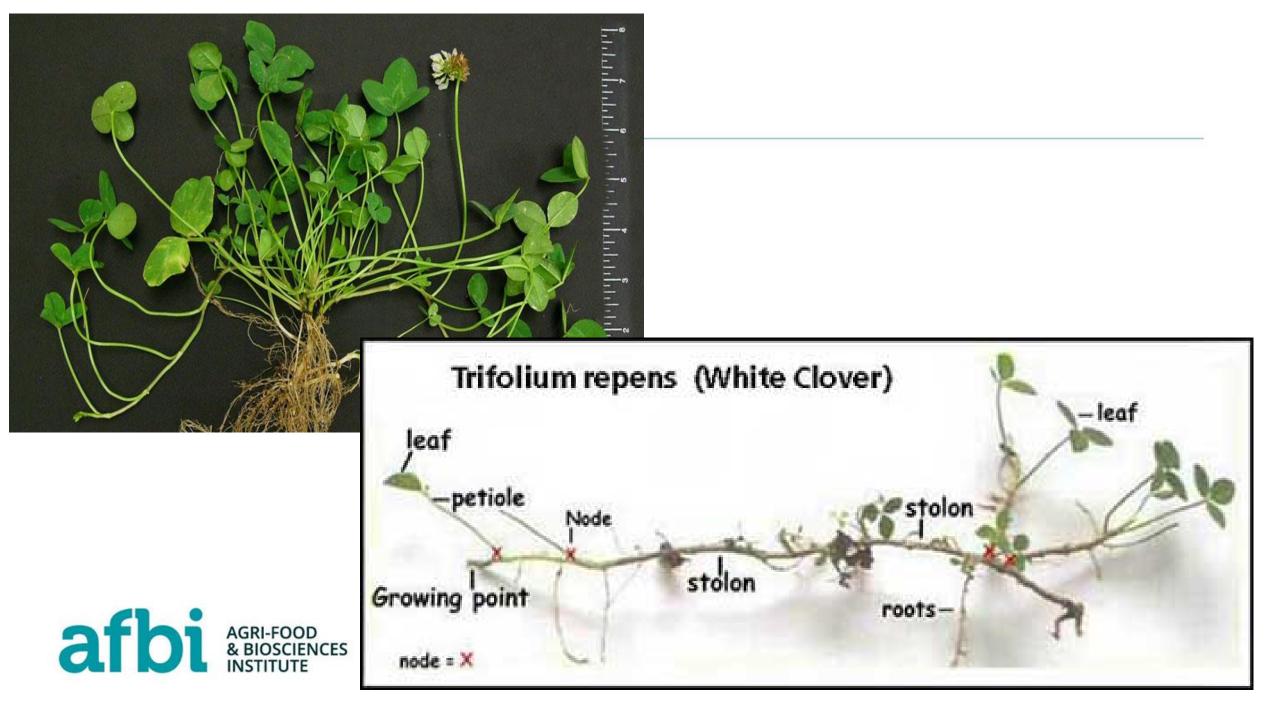
David Patterson Jan 2022

afbini.gov.uk

reducing reliance on fertiliser N

- increase species diversity to deliver more sustainable grassland
- use of legumes to fix biological N
- white & red clover

increase diversity: step by step


advantages of grass/ white clover

 white clover can substitute chemical N with fixed atmospheric N

avg =150 kgN/ha

- ideal for grazing swards (stoloniferous) AND its growth complements perennial ryegrass (PRG)
- higher DM intakes due to the higher digestibility of WC (less cellulose and lignin)

features of red clover

- grass/ red clover mix
- 14-16 tDM/ha 18-22%CP
- persists for 2 4 years
- upright habit, elevated growing point

How do grass/clover swards perform in beef farming systems?

4 year study
 G/WC + 50 kgN/ha ≈ 86% yield of G + 360 kgN/ha

• 5 year study

G/WC + 0 kgN/ha ≈ 85% stocking rate of G + 400 kgN/ha

• 3 studies

G/WC + 50 kgN/ha ≈ 90% carcass gain/ha of G + 220 kgN/ha

(AFBI & Teagasc)

but there are challenges...

- less predictable spring yields of clover
- less out-of-season growth
- perception of poor clover persistency
- bloat incidence
- establishing clover into new and existing swards

What about environmental impact?

- <u>Free N</u>: Rhizobia bacteria fix atmospheric nitrogen (N) Fixed N is considered as carbon and energy neutral
- <u>GHGs</u>: much reduced use of chemical fertiliser main source of (N₂O) emissions from fertilised grassland
- <u>Carbon footprint</u>: LCA comparison of dairy origin beef finishing system using grass/clover vs grass +150kgN/ha showed a 19% reduction in C footprint (Dawson et al., 2009)

Summary

- grass/clover sward can substitute fertiliser N and improve herbage digestibility
- establishment and persistency challenges
- different management strategy

Key Messages

- Recent fertiliser price increases will significantly increase the cost of producing both grazed grass and grass silage.
- However, good quality grass remains the cheapest feedstuff available on NI farms and in most cases it is still economic to apply chemical N up to 200 kg N/ha, providing grass is well utilised.
- Maximise grass response from fertiliser applied through good management practices:
 - Soil health (pH, P and K) Timing of fertiliser application Good grass utilisation
- Slurry and manures are valuable sources of nutrients nutrient management planning is critical
- Longer term white/red clover have significant potential to reduce reliance on N fertiliser

College of Agriculture, Food & Rural Enterprise

Forthcoming Webinars

1 st February	Arable Conference: Understanding Carbon in Arable Rotations	
2 nd February	Sheep Conference: Pasture Productivity	
3 rd February	GrassCheckGB Conference	
7 th February	Targeted Selective Treatment of Anthelmintics: An introduction	
8 th February	Arable Conference: Nitrogen & Biopesticides	
9 th February	Sheep Conference: Resilience through Health & Environment	
22 nd & 24 th February	Ulster Grassland Society Annual Conference: Efficiency Driving a Lower Carbon Footprint	
1 st March	Multi-Species Swards – A View from the Farm	