The carbon-foot print of Northern Ireland milk production systems

Conrad Ferris, Aurelie Aubry, Tianhai Yan and Steven Morrison

AFBI-AgriSearch Seminar 17 June 2014

What can the calculator be used for

- 1. Calculating the carbon-footprint of individual farms with a high degree of accuracy (relatively few assumptions)
- 2. Calculating the carbon-footprint of a greater number of farms using 'survey' data (involves a number of assumptions)
- 3. Calculating the carbon-footprint of experimental systems, and examining the effect of making changes within systems (involves a number of assumptions)

1) Calculating the carbon-footprint of individual farms with a high degree of accuracy

Carbon footprint of commercial dairy farms in Northern Ireland (RCF project)

- Data obtained from seven farms involved in an onfarm research project
- 'High input high output' farms
- Calculations based almost entirely on actual farm data
- Data collected by AFBI staff, checked, and inputted to the calculator

Background information on 7 commercial dairy farms (RCF project)

		Average	Minimum	Maximum
No. of dairy cows		184	117	373
Milk sold	l/cow/yr	8,497	7,388	10,294
Total milk sold	kg/yr	1,660,753	926,634	3,914,401
Land area	ha	119	71	239
Stocking rate	ce/ha/yr	2.6	1.9	3.5
Concentrate use	kg/cow/yr	2,564	2,002	2,976
Concentrate use	kg/kg milk	0.29	0.25	0.31
Fertiliser use	kg N/ha/yr	185	152	228

Greenhouse gas emissions from 7 commercial dairy farms (CO2 e)

		Average	Minimum	Maximum
Excluding sequestration				
Total emissions	tonnes	1,822	1,049	4,230
Allocation factor for milk production	% of total	86	77	90
Emissions per cow	t/cow	9.6	8.9	11.3
Emissions per ha	t/ha	15.0	12.0	19.0
Emissions per kg of milk produced	kg/kg milk	1.11	1.02	1.19
Including sequestration				
Emissions per kg of milk produced	kg/kg milk	0.97	0.89	1.07

AID Agri-Food and Biosciences Institute

Sources of Greenhouse Gas Emissions from the 7 farms

- Enteric fermentation
- Manure management
- Fertiliser production/application
- Concentrate production/transport
- Land use
- Fuel, Electricity
- Other

2) Using survey data to examine drivers of GHG emissions

Farm Business Survey data

- Data from 117 Specialist dairy farms for period 11/12 obtained from DARD (Farm business survey data)
- Farms selected to cover a spectrum of dairy systems good geographical spread across NI
- Sub-set of data from 100 farms used in GHG modelling exercise
 >75% dairy cattle (relative to total number of cattle)
- Calculation of GHG emissions based on actual data collected from Farm Business Survey, combined with a number of assumptions:
 - Dairy heifer numbers
 - Allocation between dairy and other enterprises
 - Number of months grazing
 - Forage yields and nutritive values
 - Manure handling systems
 - Land use change

Background information on 100 farms (Farm Business Survey, DARD)

		Average	Minimum	Maximum
No. of dairy cows		94	15	362
No. of heifers		59	3	278
Milk sold	l/cow/yr	6349	4540	9618
Stocking rate	ce/ha/yr†	2	0.8	3.2
Concentrate use	kg/cow/yr	1982	676	3528
Concentrate use	kg/kg milk	0.3	0.12	0.45
Fertiliser use	kg N/ha/yr	134	0	261
Diesel use	l/100 kg ECM	1.6	0.7	4.1
Electricity use	kWh/100 kg ECM	3.6	1.3	10.3

Source of GHG emissions (%) from 100 dairy farms (Farm Business Survey, DARD)

	Average	Minimum	Maximum
Source of emissions (%)			
- Enteric fermentation	44	36	51
- Manure	18	14	21
- Fertiliser	13	0	22
- Concentrate	15	6	23
- Land use	3	1	7
- Fuel, electricity	4	2	10
- Other sources	3	2	4

Calculated GHG emissions from 100 dairy farms (Farm Business Survey Data, DARD)

	Average	Minimum	Maximum
Excluding sequestration			
Emissions/cow (t)	7.9	4.3	10.6
Emissions/ha (t)	10.8	3.5	21.1
Emissions/kg of milk produced (kg/kg)	1.22	0.89	1.69
Including sequestration			
Emissions/kg milk produced (kg/kg):	1.02	0.67	1.41

Relationship between GHG emissions/kg of ECM milk and yield of Energy corrected milk (100 farms)

Relationship between GHG emissions/kg of ECM and annual concentrate input (100 farms)

Agri-Food and Biosciences Institute

Relationship between GHG emissions/kg of ECM milk and concentrate feed rate (100 farms)

Agri-Food and Biosciences Institute

Relationship between GHG emissions/kg of ECM milk and the proportion of heifers on a farm (100 farms)

3) Calculating the GHG footprint of experimental systems

Cow performance within three spring calving milk production systems

- 3 Spring calving systems examined over 3 years
- > 26 cows/system
- Systems differed in concentrate inputs

	Low concentrate	Medium concentrate	High concentrate
Concentrate intake (t/year)	0.56	1.14	1.85
Milk yield (kg/year)	5650	6289	6571
Fat (g/kg)	44.7	45.8	44.8
Protein (g/kg)	34.2	34.6	34.7
Stocking rate (cows/ha)	2.3	2.6	2.9

Breakdown of GHG emissions from three milk production systems (for a 100 cow herd)

 Assumed values adopted for heifer rearing, fuel and electricity use

	Low conc.	Medium conc.	High conc.
Total farm emissions (t/year)	669	724	760
Source of emissions (%)			
- Enteric fermentation	45	45	43
- Manure	19	19	19
- Fertiliser	22	18	16
- Concentrate	6	10	16
- Land use	3	3	3
- Fuel, electricity	2	2	2
- Other sources	3	3	3

Agri-Food and Biosciences Institute

Calculated GHG emissions from three spring calving milk production systems

	Low conc.	Medium conc.	High conc.
Excluding sequestration			
Emissions/cow (t)	6.7	7.2	7.6
Emissions/ha (t)	12.1	14.7	17.1
Emissions/kg of milk produced (kg/kg)	1.09	1.03	1.05
Including sequestration			
Emissions/kg milk produced (kg/kg):	0.90	0.88	0.92
Effect of including sequestration (% reduction)	-17.5%	-14.5%	-12.3%

Confinement vs grazing

 2 systems examined over a full lactations (Confinement and low input grazing)

2 genotypes on each system (Crossbreds and Holstein)

20 cows/system

	System			
	Confinement		Graz	ing
	HF	J × HF	HF	J × HF
Annual concentrate intake (t/cow)	3.4	3.3	0.94	0.88
Annual milk production (kg/cow)	9,053	7,438	6,274	5,964
Milk fat (%)	4.34	4.83	4.35	4.68
Milk protein (%)	3.40	3.68	3.36	3.60
Live weight (kg)	590	578	591	528
No. of days housed / year	365	365	154	154
Stocking rate (cows/ha)	3.1	3.1	2.6	2.6

stitute

Calculated GHG emissions from a Confinement and grazing system involving two cow genotypes

	System				
	Confinement		Graz	zing	
	HF	J x HF	HF	J x HF	
Excluding sequestration					
Emissions/cow (t)	9.7	8.9	6.9	6.8	
Emissions/ha (t)	21.6	22.0	14.0	14.4	
Emissions/kg of milk produced (kg/kg)	1.02	1.05	1.05	1.02	
Including sequestration					
Emissions/kg milk produced (kg/kg):	0.91	0.95	0.89	0.87	
Effect of including sequestration (% reduction)	-11%	-10%	-15 %	-15%	

gri-Food and osciences Institute

- The AFBI dairy GHG calculator allows the C-Footprint of milk production systems to be calculated with a high degree of precision due to the incorporation of the current scientific data
- Flexibility in 'source' of data (including the use of default values) allow the calculator to have a number of roles:
 - Footprint of individual farms
 - Trends in survey data
 - Modelling emissions from experimental systems
- Large range in calculated footprints of individual farms reflect a wide range of efficiencies
- Very different milk production systems can have similar carbon footprints

