

Greenhouse gas emissions and land use: carbon source and sink

Dr Catherine Watson Head of Agri-Environment Branch

Technical seminar on GHGs and dairy cow genetics 17th June 2014

www.afbini.gov.uk

Outline of talk

- AFBI's research on GHG emissions
- •GHG mitigation strategies, particularly for nitrous oxide
- Potential for carbon offsetting
- Carbon sequestration by grassland soils
- Conclusions

Emissions from agriculture as a % of total national emissions of GHGs

Northern Ireland Agriculture GHG Statistics, 2011

(Source: NAEI, 2013)

Emissions vs offsetting

AFBI's GHG Research

- GHG emissions from agriculture
 - Provide information and tools to monitor GHG emissions accurately and enable mitigation strategies to be recognised
 - Through research, develop mitigation strategies to progress towards lower carbon intensity systems
 - Integrated research and technology transfer to help direct the industry towards agreed goals
- Enhancing carbon sequestration
- Land-based renewable energy
 - Research to underpin increased land-based renewable energy production from the agri-food sector

Department of Agriculture and Rural Development

Provide tools to monitor GHG emissions accurately

- Current agriculture inventory is based on the use of standard emission factors for livestock, manures and fertilisers (large uncertainty)
- Ongoing research is producing more accurate GHG emission factors based on the variations which occur between different classes of livestock, livestock diets, soils and manures and fertiliser
- This will allow accurate base line emissions to be determined and thus provide the basis for the industry to gain recognition for mitigation strategies adopted
- AFBI is developing, testing and validating online GHG calculators

GHG mitigation approaches under investigation

Range of approaches being investigated:

- Nutritional and management factors under evaluation e.g. improved forage quality, new transition cow management techniques
 - Improved livestock genetics
 - New slurry management techniques and new fertiliser types

N uptake of grass

Urea is significantly lower (P<0.01, LSD=26 kg N ha⁻¹)

N₂O emissions from fertiliser in dry year vs wet year

Annual N₂O EFs from urine and dung (2012)

- Huge seasonal variation N_2O emissions in Spring>Summer>Autumn (overall: P<0.001)
- N₂O EFs from urine were 1.02, 0.28 & 0.05% in spring, summer and autumn, respectively
- N_2O emissions from artificial urine were greater that real urine, particularly in the spring
- N_2O EFs from dung were 0.17, 0.15 & 0.04 in spring, summer and autumn, respectively
- DCD reduced N₂O emissions from urine by 75% & 50% in spring & autumn respectively, but was not effective in summer (rainfall 2.8 times 30 year average)
- Supports disaggregating the IPCC EF of 2% for cattle excreta by excreta type 21 N and a second second

Investigating potential for carbon offsetting

- C sequestration in grassland soils
- Land based renewable energy
 - Anaerobic digestion co-digestion
 - Biomass crops (e.g. SRC)

igri-Food and Biosciences Institute

Carbon storage in the soil

Land use change - long term effect on C sequestration (t C/ha/yr)

Permanent grass to crops-2.57Permanent grass to temporary grass-2.12Crop to permanent grassland0.82Crop to temporary grassland0.08Temporary grass to permanent grass2.12Temporary grass to crops-0.42

Negative denotes loss of C

Smith et al. (2010)

Mean

Measuring and Monitoring Carbon Sequestration

Comparison of carbon content of soil under an Energy crop (Hillsborough, 2013).

Carbon flux estimation using Eddy Covariance. Measures total ecosystem fluxes of carbon (Hillsborough, 2013).

Soil CO_2 flux system used to measure CO_2 concentration (Hillsborough, 2013).

CO₂ exchange measured using controlled transparent perspex chambers (Hillsborough, 2014).

Agri-Food and Biosciences Institute

Further details on these research projects contact Dr Rodrigo Olave at AFBI Hillsborough

Comparison in C content of soil under a young and old sward (Saintfield House Estate, August 2011)

- Greatest difference in C content between the old and young sward is in the top10 cm of soil
- Old sward has almost double the C content of the young sward in that layer)

gri-Food and

C sequestration : Archived soils

Carbon content measured in archived soil samples from:

- Long term slurry rate trial 40 years
 (3 of 8 treatments)
- N fertiliser grazing trial 17 years (average of 2 of 6 treatments)

C content converted to C stored in top 15 cm of grassland soil

Conclusions (1)

- IPPC default N₂O EF for fertiliser N is 1% (used in GHG calculators)
- N₂O EFs for CAN range from 0.59% (dry conditions) to 3.99% (wet conditions)
- N₂O EFs from urea based fertilisers are lower than CAN, particularly when wet
- Replacing CAN with amended urea is an effective mitigation strategy to reduce N₂O emissions, whilst maintaining grass production

Conclusions (2)

- Current estimate for C sequestration in NI carbon calculators is 0.7 t C/ha/yr for permanent grass (no adjustment for grass reseeds)
- For well managed grassland, data in NI suggests C sequestration is 0.5 to 1.28 t C/ha/yr
- GHG calculator will evolve as science develops and gaps in knowledge are addressed
- Uncertainty about saturation (C content equilibrium) causing difficulties in predicting rates of sequestration
- Do grassland soils act as a perpetual sink for carbon?
- More research is needed!

Thank you for your attention

