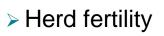


AgriSearch Beef Farm Walk AFBI, Hillsborough

Wednesday 10th September 2014

Farm Walk



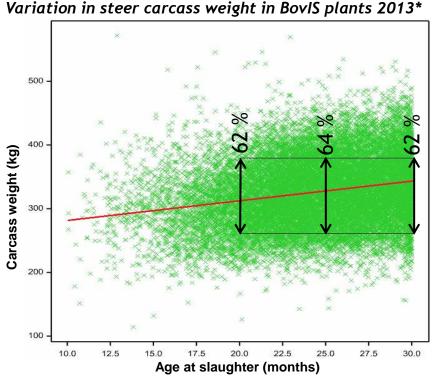
Main topics

- > Bovine Information System (BovIS)
- > How to achieve 24 month calving?
- Suckler cow genotype comparison
- > How do we manage body condition score?
- Grassland management
- Dairy-origin beef production

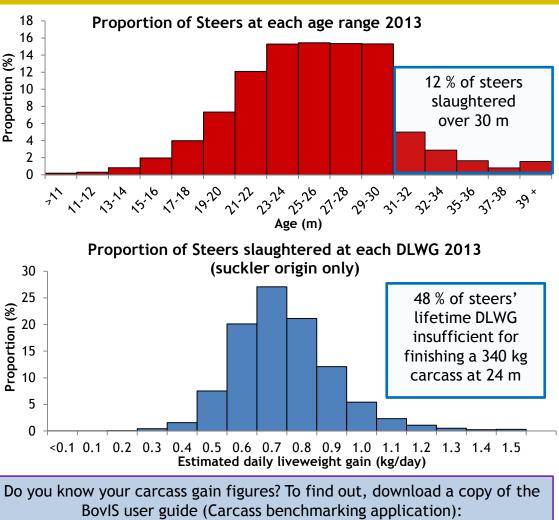
Additional topics

- Animal health
- Winter feeding options
- Health & Safety and Rural Support

Benchmarking



Beef production in Northern Ireland


- Large variation in carcass weight at all ages
- Possibility to reduce age at slaughter whilst maintaining slaughter weight

^{*}Figures denote proportion of steers at selected age achieving in spec weight

Agriculture and

Rural Development

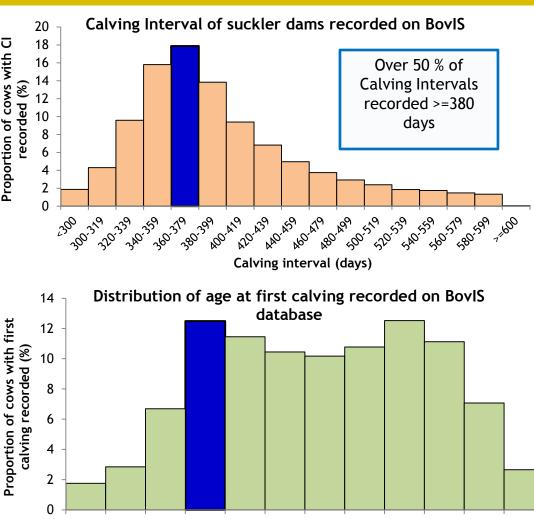
http://www.agrisearch.org/publications/farmer-booklets

Agriculture and

Rural Development

Reproductive performance: room for improvement

Proportion of cows with Cl


Current reproductive performance in NI (2013)

- Reproductive performance poor compared with optimum levels
 - Calving interval of most common suckler dams average 415 days
 - Age at first calving on average 30.6 months

COMMON REASONS GIVEN FOR NOT CALVING AT 24M

"Calving at 24 months requires a high level of management"	"Heifers are not mature enough at 14-15 months to bull"	
"Heifers that calve at 24 months cannot compete with the cows in the herd"	"Heifers that calve at 24 months never grow properly into cows"	
"Calving at 24 months is expensive as you have to		

feed high levels of meal"

20-21 22-23 24-25 26-27 28-29 30-31 32-33 34-35 36-37 38-39 >=40 <20

Age at first calving (m)

Driving reproductive performance on Northern Ireland suckler farms

Which management practices led to better fertility?

Superior herd fertility found amongst producers who:

- had a health plan in place (e.g. Multiple vaccinations or regular health procedures on breeding bulls)
- monitored condition score
- selected sires on EBVs rather than visual appearance
 - multiple criteria when selecting sires
- used the Hillsborough Feeding Information System (silage analysis) and/or CAFRE benchmarking
- > aimed to serve/ calve heifers at younger ages

Average (range) of farms sampled in the survey

Number breeding females		85 (8-453)
Farm size (ha)		64 (14-280)
of (%)	Lowland	67 (4-100)
rtior ype	DA	66 (8-100)
Proportion of land type (%)	SDA	86 (5-100)

Benefits of moving from Calving index 415 days(NI Average) to 380 days for a 50 cow herd

Labour efficiency

- Not calving all year
- One group of calves similar size
- Bull with one group
- Easy to keep track of cows fertility

Feeding

1,750 days x 80p/day

Save 35 extra days x 50

feeding an empty cow

Selling weanlings

> Calves on average 35 days older at sale

35 x 1kg x £2.00/kg x 44 calves

£3,080

<u>Output</u>

415 days = 44 calves / year
 380 days = 48 calves / year

4 calves a year

(24 months v 36 months)

Gains		Costs		
Additional calf sold at 1 yr old	£ 700	Increased meal feeding to heifer	-£125	
1 less year of dry heifer feeding	£ 280	& calf Overwintering		
Managing 1 less batch	?	extra calf	-£180	
	+£980		-£305	
Gain per heifer = £ 675				

Total financial benefit: +£135/cow/year

(Assuming a replacement rate of 20%)

Other concerns	Experiences of AFBI herd and CAFRE Hill Farm
Smaller Cow	No significant reduction in size if well managed after 1 st calving
Calving Difficulties	Use a bull with proven easier calving – no significant problems
Not getting back in calf	No effect on later fertility if well managed after 1 st calving

Working in partnership with industry

Farmer Funded Research

Managing a herd to improve fertility

Cow management

- Body condition score
- Calving difficulty / infections
- Fertility diseases & minerals - vet not rep

Bull management

> Housing, feeding, fertility check

Planning

- > Timing- health checks, condition scoring, service period -taking the bull out
- Scanning/ culling
- > Adequate supply of suitable replacements

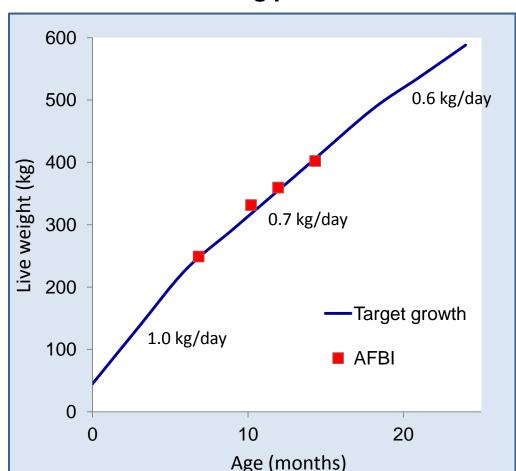
	Age (months)	Weight (kg)	Target growth rate (kg/d)	Nutrition requirements
Dullin a successful t	3	137	1.0	Suckling cow &
Bulling weight 60% mature	6	228		grass
weight at	9	292		Grass silage plus
14 months	12	356	0.7	1-2 kg conc
Calving weight	14	399	0.7	Grass
90% mature weight at	18	485		Glass
24 months	21	536	0.6	Grass silage plus
	24	588	0.0	min/vit

High growth rates are not required

Key is to monitor performance and condition score

Agriculture and Rural Development

AFBI replacement heifers



Selection criteria

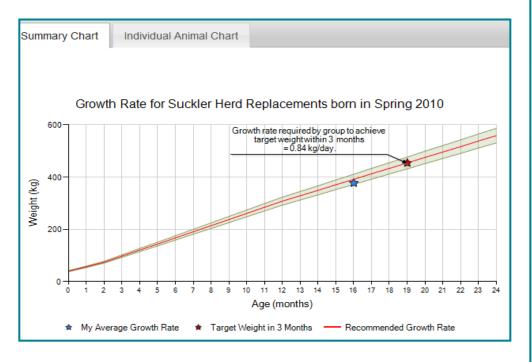
- Good temperament
- 60%+ mature weight at 14 months
- Health status
 - Vaccinations complete pre breeding
 - Lepto, BVD, Schmallenberg virus
- Nutrition (weaning calving)
 - Grass silage + 2 kg concentrate
 - Rotationally grazed
 - Grass silage + min/vit
- Breeding (>380 kg)

Agriculture and Rural Development

- Synchronized + AI
- Easy calving sire

Monitoring performance

AgriSea


Online growth monitoring

BovIS

College of Agricultur Food & Rural Enterpr

- Online tool to aid growth monitoring
- Animal list and ages supplied by APHIS
- Weights automatically plotted against target

Animal Type:	Suckler Herd Replacements
Age at first calving:	24 months
Mature Cow Weight:	620 kg
Calving Weight:	558 kg

Animal Tag No	Sex	Breed	Date of Birth	Age (months)	Weight (kg)
UK 9 390002 8274 4	F	Aberdeen-Angus	10/02/2011	17.2	400
UK 9 390002 8282 5	F	Charolais	15/02/2011	17.0	440
UK 9 390002 8284 7	F	Charolais	20/02/2011	16.9	405
UK 9 390002 8286 2	F	Aberdeen-Angus	28/02/2011	16.6	395
UK 9 390002 8290 6	F	Aberdeen-Angus	09/03/2011	16.3	350
UK 9 390002 8291 7	F	Stabiliser	11/03/2011	16.2	300
UK 9 390002 8292 1	F	Charolais	12/03/2011	16.2	410
UK 9 390002 8294 3	F	Aberdeen-Angus	14/03/2011	16.1	390
UK 9 390002 8295 4	F	Aberdeen-Angus	19/03/2011	16.0	305
UK 9 390002 8296 5	F	Charolais	20/03/2011	15.9	350
UK 9 390002 8297 6	F	Charolais	22/03/2011	15.9	350
UK 9 390002 8300 2	F	Stabiliser	23/03/2011	15.8	430
UK 9 390002 8707 3	F	Charolais	10/04/2011	15.2	395
UK 9 390002 8708 4	F	Charolais	12/04/2011	15.2	410
UK 9 390002 8711 7	F	Stabiliser	22/04/2011	14.9	400
UK 9 390002 8710 6	F	Stabiliser	26/04/2011	14.7	300

Synchronisation

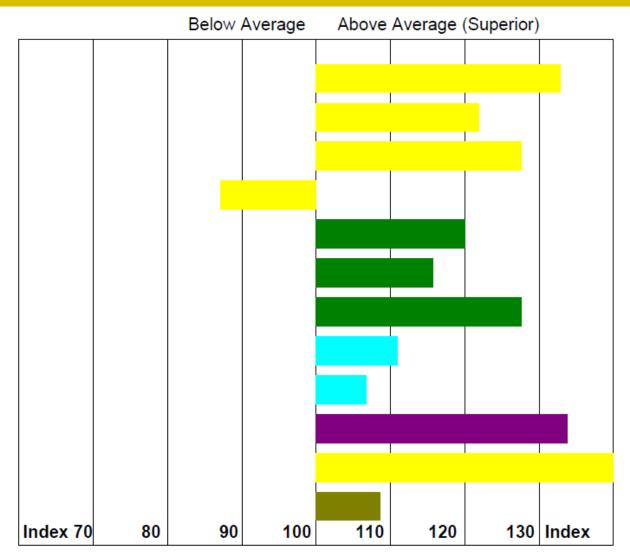
- Controlled breeding
- > Ensure heifers produce their first calf early in the season
- Batch calving of heifers
- Time/labour saving heat detection & handling
- Cost £35-40 (dependent on protocol) plus AI charge & semen
- Conception rates (40 70 % to first service)

<u>AI</u>

Rural Development

- Bull selection (potentially superior genetics)
- Proven sire with high EBV's for: calving ease direct

birth weight gestation

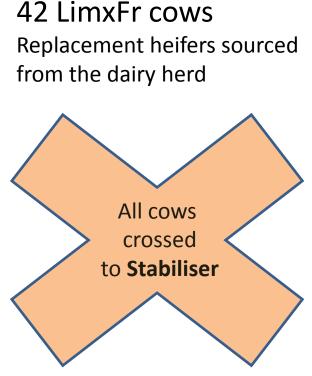


Selecting a suitable sire

College of Agricultur Food & Rural Enterpr

Estimated breeding values (EBV's) – Givendale Norseman

Analysis date: 22/06/2014	EBV	Acc %
Gest. Length (days)	-3.1	48
Birth Weight (kg)	-1.9	68
Calving Ease (%)	1.8	62
Mat.Calv. Ease (%)	-0.4	35
200 Day Milk (kg)	5	44
200 Day Growth (kg)	26	74
400 Day Growth (kg)	65	73
Muscle Depth (mm)	2.1	72
Fat Depth (mm)	0.4	65
Beef Value	39	74
Calving Value	7	60
Maternal Value	15	35


AFBI Suckler Cow Herd

Current Research Project

Evaluation of mid & late pregnancy feeding strategies for managing body condition score of spring calving suckler cows and their subsequent reproductive and progeny performance

Current total of 94 suckler cows

43 Stabiliser cows Selected for ease of care, good fertility and maternal traits

Stabiliser v LimxFr Dams

Maternal traits

No effect of dam breed on:

- Cow temperament score
- Calving difficulty score
- Mothering ability score
- Calf vitality score

However Body Condition Score higher in ST than LimxFr

Table 2. Measures of fertility

	2013		2014	
	LimxFr	ST	LimxFr	ST
Calving interval (days)	388	392	380	388
No. of cows in extended calving interval (>450 days)	3	0	0	2
Calving period (days)	131	97	129	128
No. of cows in extended calving period (>90days)	7	3	5	6

Table 1. Cow and calves

	2013		20	14
	LimxFr (n=50)	ST (n=33)	LimxFr (n=47)	ST (n=44)
No. of cows died	1	0	5	1
No. of difficult calvings (no. of Caesarean Sections)	7 (0)	5 (2)	8 (0)	9 (1)
Calf mortality: at birth by weaning [‡]	1 1	2 3	0 2	1 2
Calves weaned/ 100 cows	96.0	84.8	93.6	90.9

[‡]Up to 8th September for 2014 data

Improving Herd Fertility:

- Improve Heat detection
- All cows Al'd in 2014
- Synchronisation programme

Progeny Performance

Table 3. Up to weaning				
	Dam breed			
	Lim x Fr	ST		
Liveweight (kg) - at birth - at weaning	42.0 279.9	38.1 247.1		
DLWG Birth to weaning (kg/d)	1.14	1.01		

2014 Grazing:

Out to grass on Monday 14th April 2014
 Aim for average of 1kg LWG/d over grazing period

ALASIN	
	P
R	

Table 4. Weaning to turnout

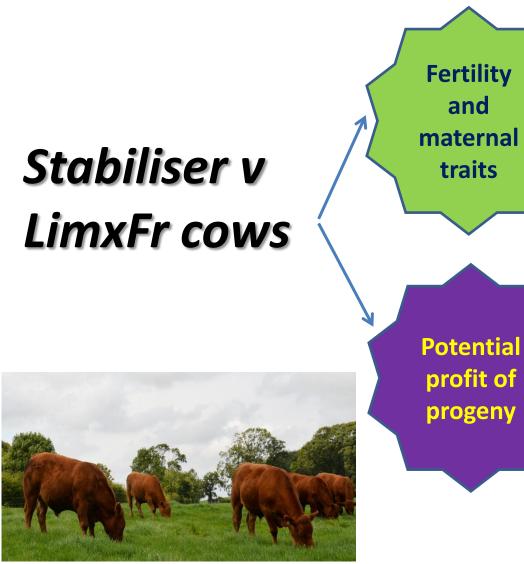

	Dam breed	
	Lim x Fr	ST
LW at turnout (kg)	384.2	370.4
LW gain weaning to turnout (kg)	109.1	122.3
DLWG Weaning to turnout (kg/d)	0.70	0.79

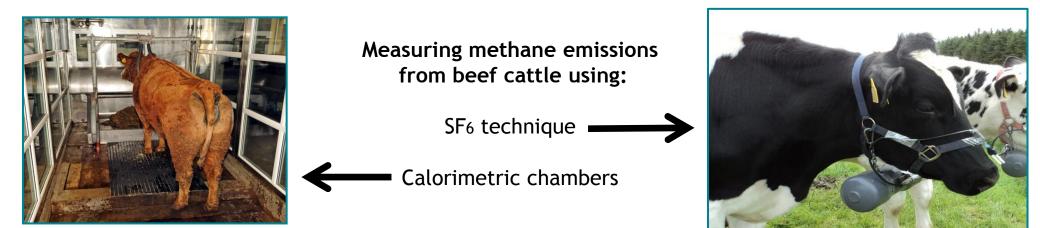
Table 5. Finished cattle

Previous study compared entire male progeny from Stabiliser and Charolais bulls

	Breed		
	CH x (LimxFr)	ST x (LimxFr)	ST
Birth weight (kg)	48.2	44.4	42.1
Calving difficulty score	3.09	1.69	2.52
Carcass weight (kg)	328	306	295
Conformation	7.6	7.5	7.9
Fat	7.3	7.6	7.3

Key messages

Results to date suggest that the Stabiliser cow is a comparable alterative to the crossbred Limousin x Friesian cow, in terms of fertility and maternal traits


Depends on your system:

- Sold as weanlings- calves from LimxFr cows were 32.8kg heavier than those from Stabiliser cows, resulting in potentially £73.80 increase in selling value.
- Sold as stores- live weights not significantly different
- Sold finished- carcass value not significantly different

Greenhouse gas (GHG) emissions AgriSearch

Methane research at AFBI

- Emissions correlated to feed intake: increase intake > increase digestion > increase emission
- But, performance must be considered as emissions per kg of product is the key
- Methods to reduce GHG emissions include:
 - calving at 24 months
 - improved fertility
 - high weaning efficiency
 - reducing slaughter age

Improved production efficiency is key!

Energy metabolism of suckler cows AgriSearch

METHANE

(7%)

Management of body condition score

PARTITION OF ENERGY IN DRY SUCKLER COW

HEAT PRODUCION (59%)

Consumed feed (energy) is partitioned as follows:

- heat production
- ➢ faeces
- > urine

– GHG

- methane
- milk production
- retained energy
- The energy we supply in the form of feed is required for:
 - maintenance
 - milk production
 - pregnancy
 - body condition score

Decreasing priority

- Two genotypes similar energy metabolism
 - dry period
 - lactating

Relative to Limousin x Holstein the Stabiliser cows have:

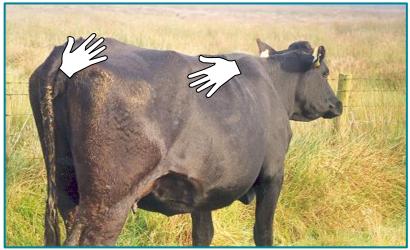
RETAINED ENERGY (3%)

- Similar grass intake
- Lower milk yield
- Lower calf weaning weight
- Higher body condition score

FAECES

(27%)

URINE (5%)


Body condition score

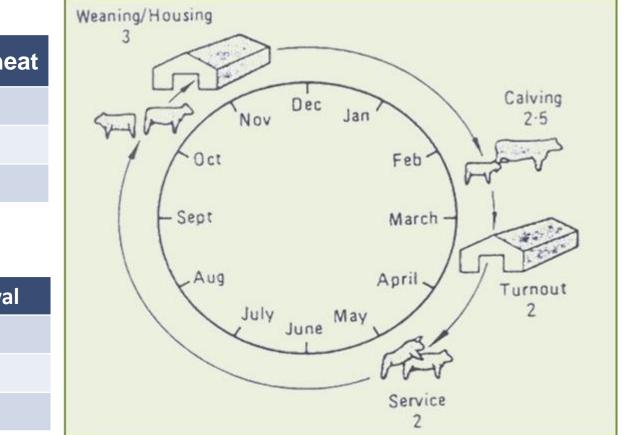
How to assess body condition score

- Under utilised on many farms
- Is used to achieve a balance between:
 - economic feeding
 - good production
 - good welfare
- Handle cows to properly assess body condition score at:
 - calving
 - service
 - > weaning
- Body condition score can impact on:
 Feed requirement
- 1 unit body condition score
 - = 70 kg of live weight (600 kg)
 - = 1800 MJ
 - = 1 tonne silage or 250 kg barley

Condition score 2

Condition score 3

Agriculture and Rural Development


Body condition score

Importance for fertility

Body condition score can impact on:
 Fertility

Target for spring calving herd

BCS at calving	Days to first heat
1.75	57
2.5	43
3.50	48

BCS at calving	Calving interval
1 – 1.5	418
2	382
2.5-3.0	364

Drennan & Berry (2006)

Body condition score

Practical methods to utilise body condition score

Group cows according to condition score and feed accordingly

Thin cows	OK cows	Fat cows
<2.5	2.5 – 3	>3.0

Dependent on:

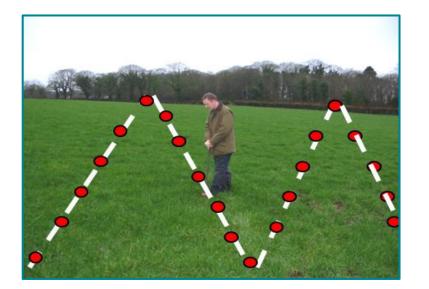
- feed quality (silage analysis)
- Feed space allowance
- feed method
- parasite control

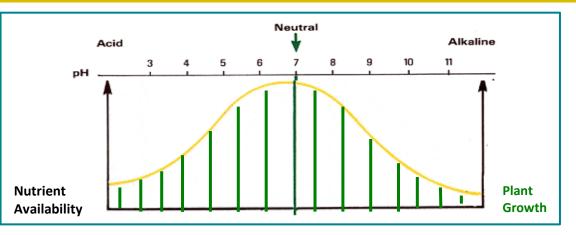
• Options:

griculture and

Rural Development

- wean early
- wean late
- autumn grazing
- forward creep grazing



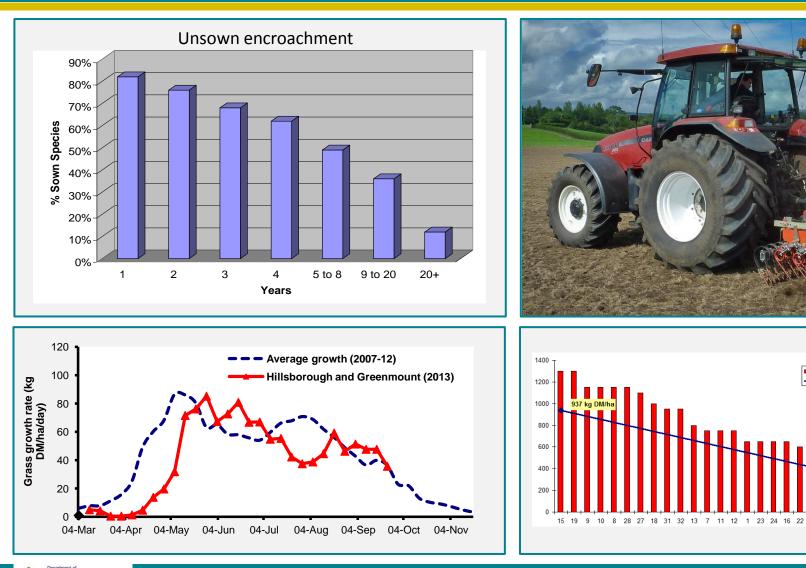


Soil sampling, pH, nutrient availability and plant growth

Soil P Index What the P Index means		What the P Index means
0	Deficient	Production will be limited. Requires slurry/manure and/or P fertiliser.
1	Optimum Extensive	Extensive grazing. Continue with usual slurry & fertiliser policy.
2	Optimum Intensive	Intensive grazing & silage fields & arable. Continue with usual slurry & fertiliser policy.
3	High	No yield response to added P. Redistribute slurry to more suitable fields. Use a zero- P fertiliser.
4 +	Excessive	No yield response or requirement for P. Redistribute slurry to more suitable fields. Use a zero- P fertiliser.

Soil analysis results

Field	pН	Р	К
1	6.3	0	3
2	6.0	2	0
3	5.5	1	1
4	5.3	2	4


Agriculture and Rural Development

Managing Grass

ROSSELL DROS (

GUTTLER @

2 17 14 5 4 6 3 21 30 29 29b 25 26 20

Cover/ paddock

Target cover line

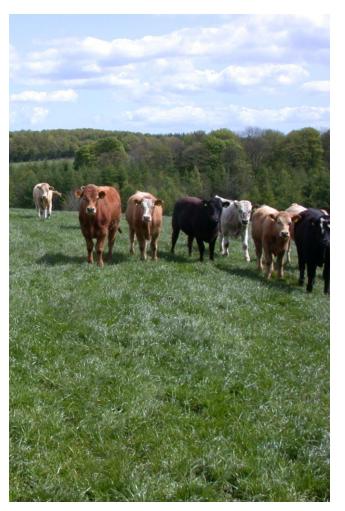
Agriculture and Rural Development

Clover Swards

- 5-20% improvement in stock performance
- With no/little fertiliser can perform like a grass sward receiving 150-180kg N/ha/year
- Don't move stock onto a clover sward when it is wet or stock are very hungry to avoid bloat
- Sow white clovers with a range of leaf sizes
- Don't bury clover seed too deep
- Red clover swards are more suitable for cutting, don't cut too low (8cm+)
- Clover is more sensitive to acidity (pH) and fertility (P&K) than is grass
- Rest in July, graze hard in November
- Take care with spray selection

Newly established white clover

Red clover sward ready for cutting



- Beef producers <u>must</u> get more production from grazed grass
 Still plenty of scope on the majority of farms
- Matching grass supply with demand is the challenge!
 - > 200kg+ over the grazing season is achievable
- Focus should be on grazing at the correct sward height
 - > Rotational 10 cm (4") (approx. 2,800-3,000 kg DM/ha)
 - Set-stocking 8 cm (3") (approx. 2,200 kg DM//ha)
- Graze swards down tightly to 4 cm (1¹/₂") or 1,500 kg DM/ha
 - Fop swards if necessary but keep it low!
- Short/leafy swards

Agriculture and Rural Development

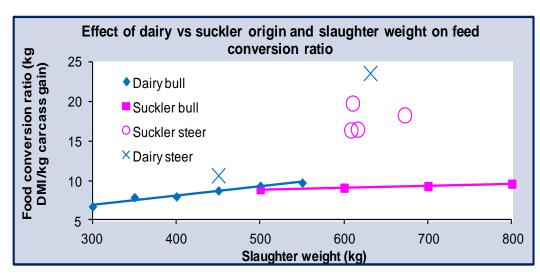
- > Grow and recover more quickly
- Have high energy and protein content
- Encourages clover growth

Grazing Method

- ◆ 6 to 8 paddock rotational grazing system is best
- Paddock No can be increased at the 'shoulders' of the season
- Graze each paddock for 3/4 days
- Rest paddocks for 18-25 days
- Easier to determine a grass surplus/deficit and nitrogen requirement using a multi-paddock system
- Assess grass available by:
 - Plate Meter (kg DM/ha)
 - Eye balling

Agriculture and Rural Development

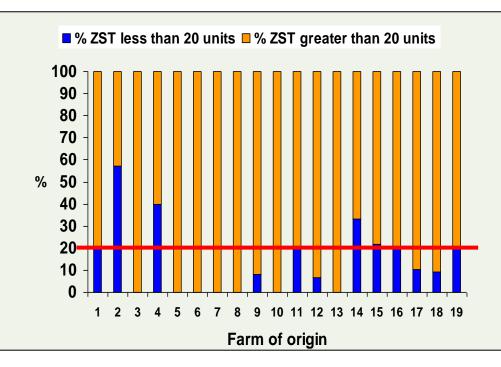
- Calculate 'Grazing Days Ahead'
- Paddocks allow more precision! BUT Good stockmanship is required
- Set-stocking in combination with topping is an option for some, particularly at lower stocking rates



Key questions:

- > What stage do you purchase?
- How do you rear and finish them?
- > Is dairy-origin beef production a worthwhile consideration?
- > How do dairy-origin cattle compare with suckler origin cattle?

	Origin	
	Suckler	Dairy
Slaughter age (months)	25.2	26.2
Carcass weight (kg)	360	311
Conformation	R=	O=
Fat classification	3=	3-


riculture and

Rural Development

Sourcing dairy-origin calves

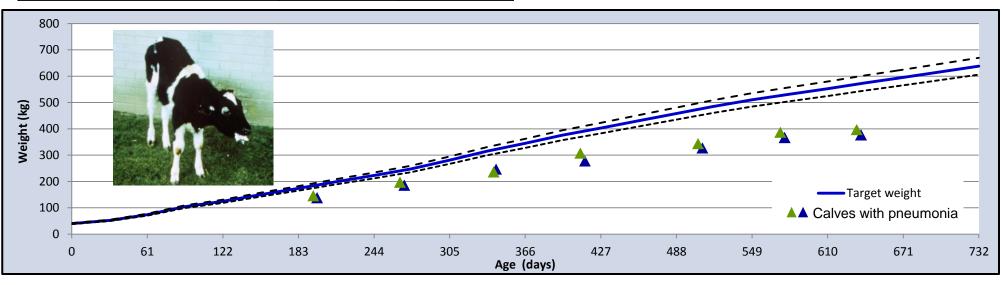
Importance of purchasing healthy calves

Parameter	Immune status category (ZST units)	
	0 - 20	>20
Live weight gain (kg/d)		
Start to 3 mths	0.64	0.77*
Slaughter age (mths)	20.1	19.5**

- 14% of calves per farm had inadequate immune status (ZST < 20 units)</p>
- Significant variation between farms
- Calves with low immune status:

AgriSearch

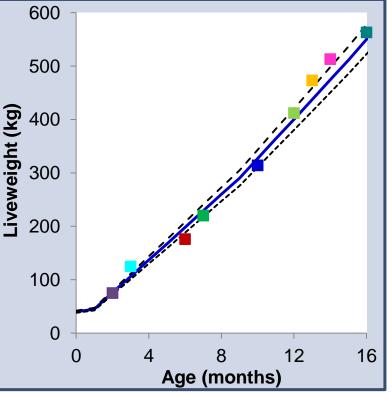
- required higher veterinary treatments
- required additional 17 days to reach target slaughter weight


Influence of calf health

Impact of calf ill health on long term performance

Parameter	Effect of scour	
	No	Yes
Live weight (kg)		
8 weeks	71	68***
1.5 year	439	427*
Mortality at 1 year (%)	4.8	7.9*

Parameter	Effect of pneumonia	
	No	Yes
Live weight (kg)		
8 weeks	72	68***
1.5 year	441	428**


16 month old Holstein bull beef

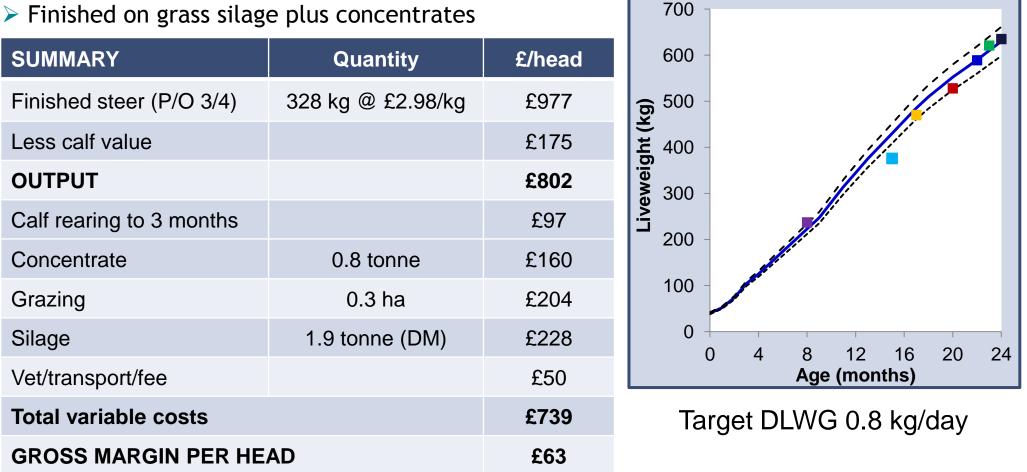
Spring born Holstein bulls

- First summer at grass
- Finished on 50:50 forage : concentrate diet

	-		
SUMMARY	Quantity	£/head	
Finished bull (P/O 2/3)	270 kg @ £2.90/kg	£783	(j
Less calf value		£55	-iveweight (kg)
OUTPUT		£728	weig
Calf rearing to 3 months		£97	Live
Concentrate	1.6 tonne	£320	
Grazing	0.05 ha	£34	
Silage	1.1 tonne (DM)	£132	
Vet/transport/fee		£40	
Total variable costs		£623	
GROSS MARGIN PER HE	AD	£105	

Target DLWG 1.05 kg/day

24 month old dairy-origin steer



Spring born Holstein and beef cross Holstein steers

First and second summer at grass

AgriSea

Finished on grass silage plus concentrates

16 month old Holstein bull beef

Autumn born Holstein bulls

\succ	Should a grazing period be included in a 16 month			
	bull system?			

Is it worthwhile supplementing these dairy origin bulls while at grass?

Experimental treatment

- Set stocked no concentrate
- Set stocked 2 kg concentrate

	2 kg concentrate	0 kg concentrate
Estimated increase in carcass weight (kg)	64.9	62.2
Increase in carcass value (£)	184	177
Grazing cost (£)	54	54
Concentrate cost (£)	48	0
Veterinary cost (£)	2	2
Margin over costs (£)	80	121

	2 kg concentrate	0 kg concentrate
LW at turnout (kg) (6 months)	174	174
LW at housing (kg) (10 months)	309	304
LWG(kg/d)	1.17	1.12

Key Messages

- No benefit of concentrate supplementation at grass
- Supplementing these cattle at grass reduced potential margins over costs by £40/head
- Potential to produce low cost beef from grass

Key messages

Based on industry data there is potential to

- reduce calving age
- reduce calving interval
- increase animal performance (carcass gain)

Potential to reduce production cost and reduce GHG emissions

• Relative to Limousin cross Holstein suckler cows the Stabiliser composite

- > has similar maternal traits
- > higher BCS, which allows for potential saving in winter feeding costs
- less milk and lower weaning weights of progeny
- > BUT similar live weights post weaning
- > allows for better biosecurity

Dairy origin beef

- buy healthy
- > bulls more efficient than steers
- maximise production from forage

Key to achieving high returns is through MONITORING performance

- weighing cattle
- body condition scoring cows
- benchmark

DON'T underestimate the value and potential of grazed grass

Working in partnership with industry

Feed accordingly

